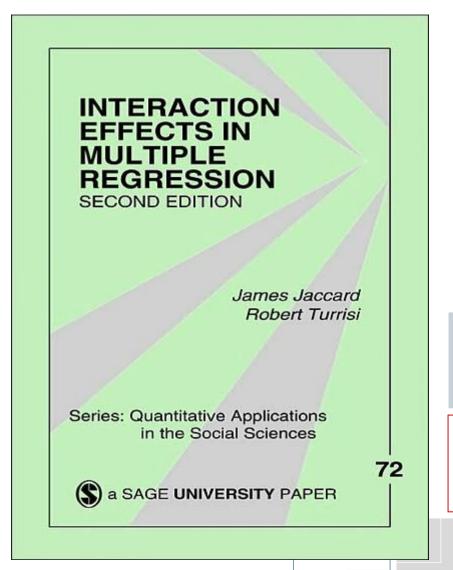
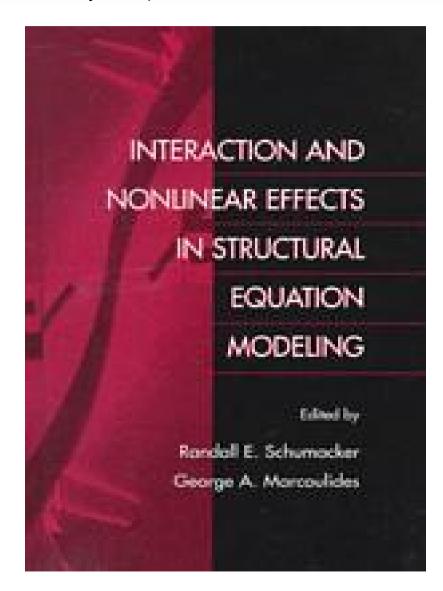

SEM實務性的應用-中介與干擾效果的驗證


張偉豪 SPSS宏德國際諮詢資深顧問 成大企管博士候選人 Amos亞洲一哥

参考文獻


- 1. Sharma Subhash, Richard M. Durand; Oded Gur-Arie(1981). "I dentification and analysis of moderator variables". JMR, Journal of Marketing Research. 18(3), 291-299.
- Baron M. Reuben and David A. Kenny(1986). "The Moderator-Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations" Journal of Personality and Social Psychology. 51(6), 1173-1182.
- 3. Kenny D. A. & C. M. Judd (1984). Estimating the nonlinear and interactive effects of latent variables. Psychological Bulletin. 96(1), 201~210.
- 4. Aiken S. Leona, Stephen G. West (1991). Multiple Regression: Testing and Interpreting Interactions. Newberry Park, CA: Sage.
- 5. Schumacker E. Randall, George A. Marcoulides (1998). Interaction and Nonlinear Effects in Structural Equation Modeling. Lawrence Erlbaum Associates.
- 6. Cohen Jacob, Patricia Cohen, Stephen G. West, Leona S. Aiken(2003). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. Hillsdale NJ: Erlbaum.
- 7. Chin W.W., Marcolin, B., Newsted P.R.. A Partial Least Squares Latent Variable Modeling Approach for Measuring Interaction Effects: Results from a Monte Carlo Simulation Study and Voice Mail Emotion/Adoption Study. Proceedings of the Seventeenth International Conference on Information Systems, 1996: 21-41.
- 8. Jaccard J., R. Turrisi, and C. Wan (1990). Interaction Effects in Multiple Regression. Newberry Park, CA: Sage
- Jonsson Fan Yang. (1998). Modeling interaction and nonlinear effects: a step-by-step LI SREL example. In R. E. Schumacker & G. A. Marcoulides (Eds.), Interaction and nonlinear effects in structural equation modeling (pp. 17-42). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

参考書

參考書

大綱

1 干擾變數與中介變數的概念

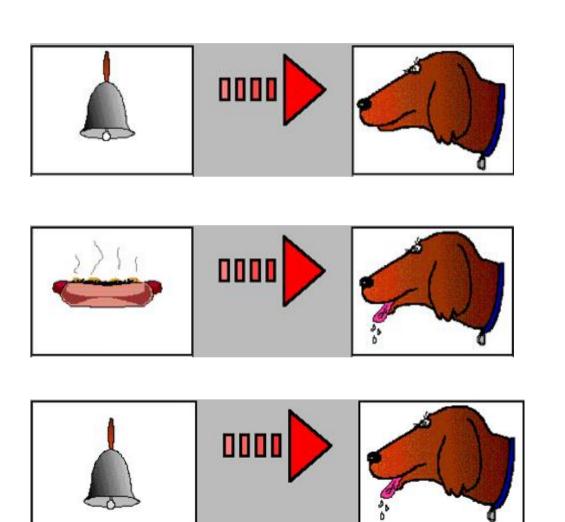
2 潮察干擾與中介變數的檢定

3 》潛在干擾與中介變數的檢定

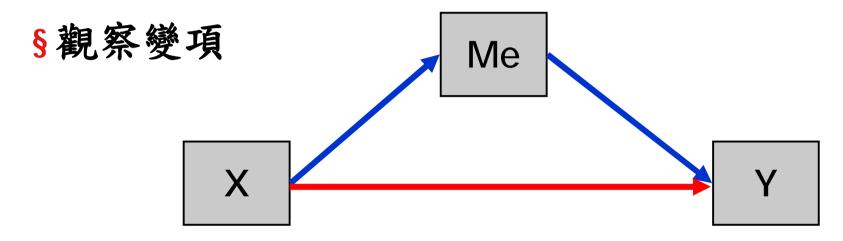
4 干擾與中介變數的存在判定

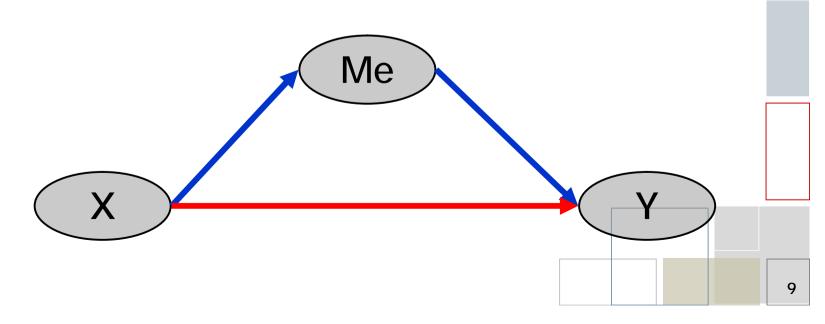
理論的建立

- §對每一種統計技術而言
 - §模型解釋了世界的現象
 - §語言釐清了我們的思想
- § 統計技術的本質來自於研究的議題及資料 的特性
- §統計技術如何改變對世界的認知
 - §複迴歸、相關、 ANOVA、SEM...等
 - § 中介與干擾的影響呢?

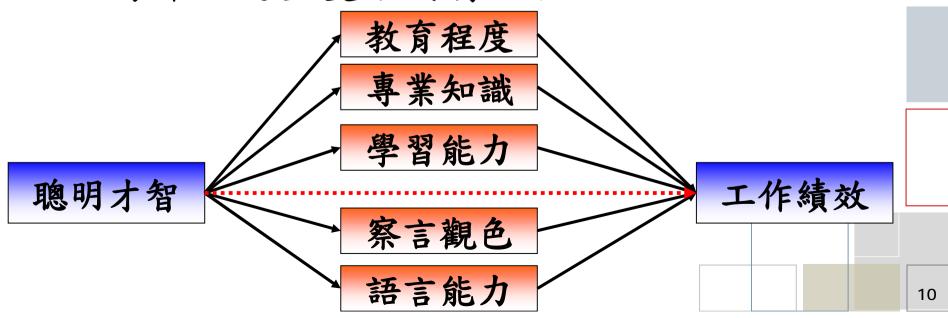

中介變數(Mediator)

- §中介變數(Intervening variable)
 - §解釋兩變數相關之間的過程
 - § 在理論上會影響所觀察現象的因素,但是這些因素並不容易被查覺、測量或操弄。它的存在與效應可從自變數對所觀察的現象的影響做推論而來。




源自於Stimuli-Response理論

中介(Mediator)變數圖解



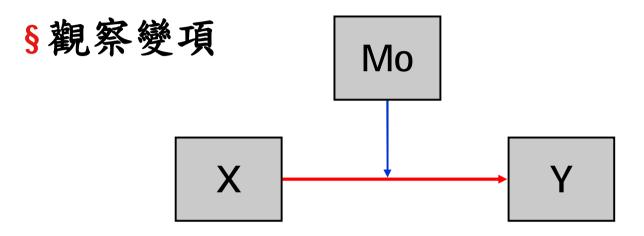
§潛在變項

中介變數的思考

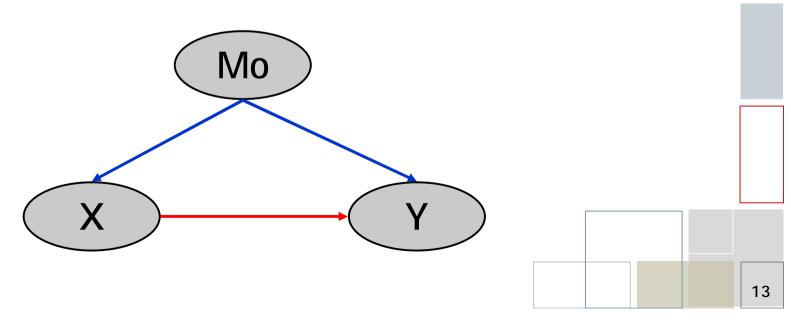
- §兩個變數IV及DV,你認為之間有因果關係?
- §這個過程如何產生?
- §所有的過程都考慮了嗎?
- §如何評估這些變數的有效性?

日常生活的中介變數例子

IV	Me	DV
男生、女生	媒人介紹	談戀愛
買房子	房屋仲介	成交
網拍(購)	網路交易平台	完成交易
工作技巧與能力	績效	升遷
壓力源強度	想太多	憂鬱
態度及主觀規範	行為意圖	行為
嚼箭牌口香糖	清新好口氣	接吻


干擾變數(moderator)

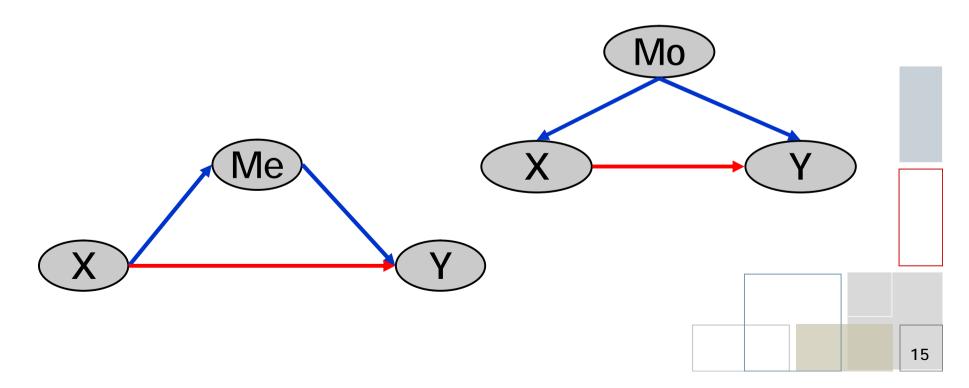
- § 又稱調節變數
- § 為一外生變數



- § 干擾變數有兩種形態
 - 在傳統模型中影響自變數與應變數之間相關的強度
 - 2. 改變了自變數與應變數之間相關的形式

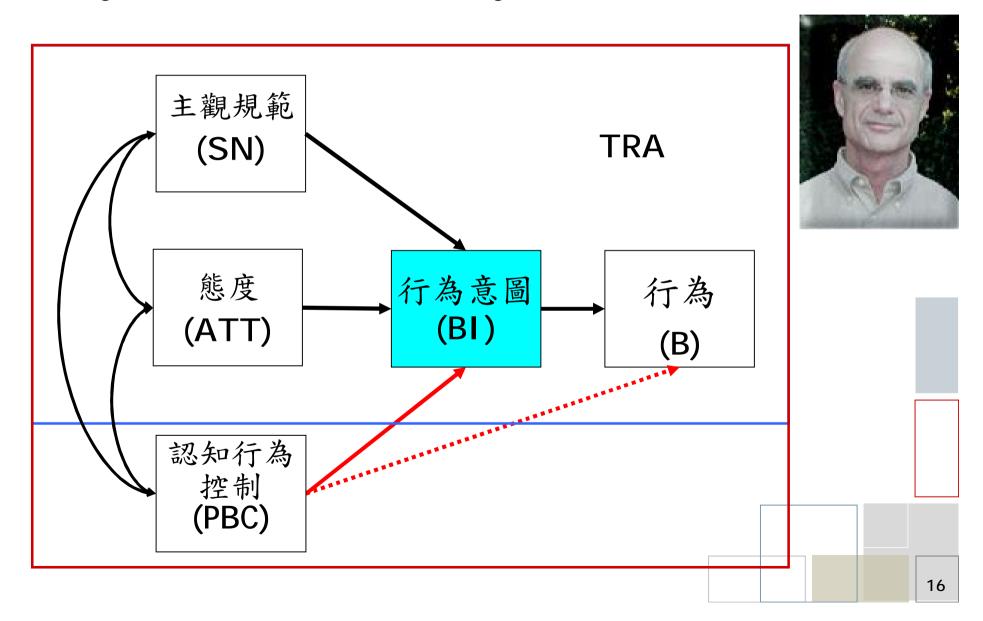
干擾(Moderator)變數圖解

§潛在變項



日常生活的干擾變數例子

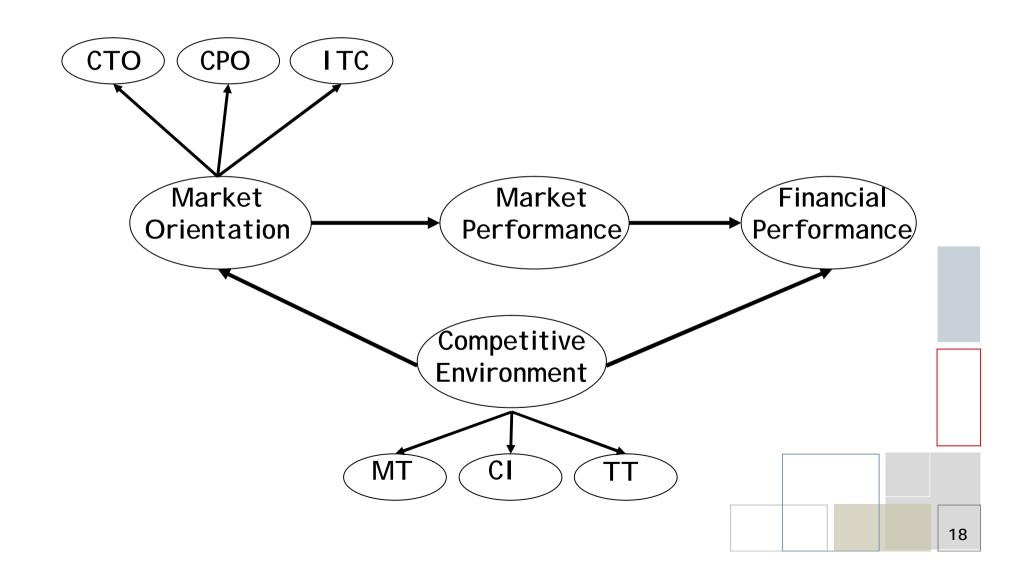
IV	Mo	DV
食物佐料	食物種類	口感
用功讀書	損友的電話	好成績
野外踏青	天氣狀況	改變心情
工作滿意度	性格	工作績效
工作績效	重視程度	薪水
小酌一番	在什麼場所喝	人際關係
夫妻	外遇	離婚


干擾與中介變數存在的事實判定

§在一個模型中,任一個變數,本身既有 自(因)變數的特性,又有應(果)變數 的特性,那麼就必有"干擾"或"中介"的 現象存在。

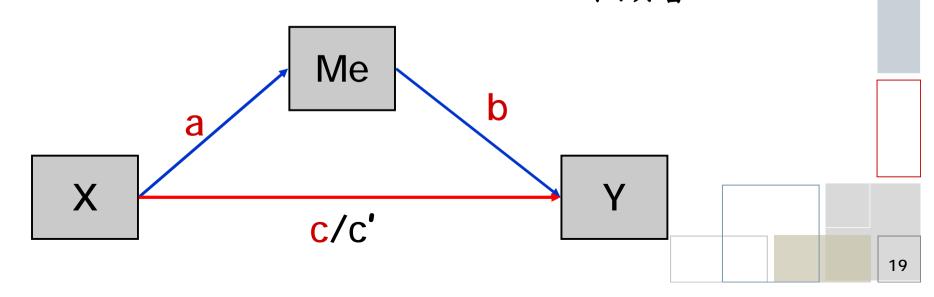
計劃行為理論

(Ajzen and Fishbein, Theory of Plan Behavior, TPB)


大部份的人都知道這篇文章

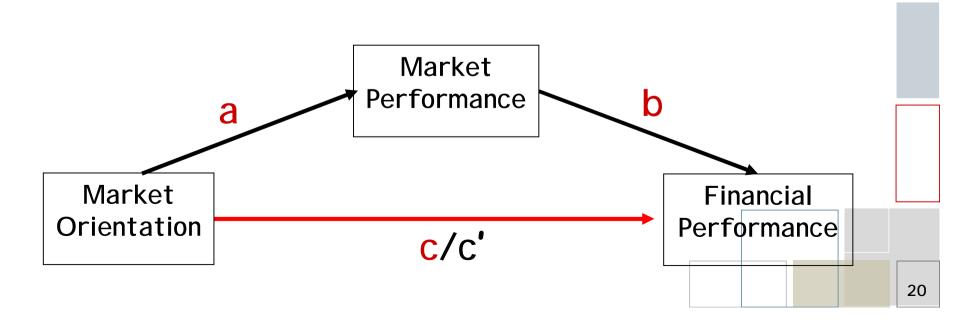
- § Baron, R. M. & Kenny, D. A. (1986).

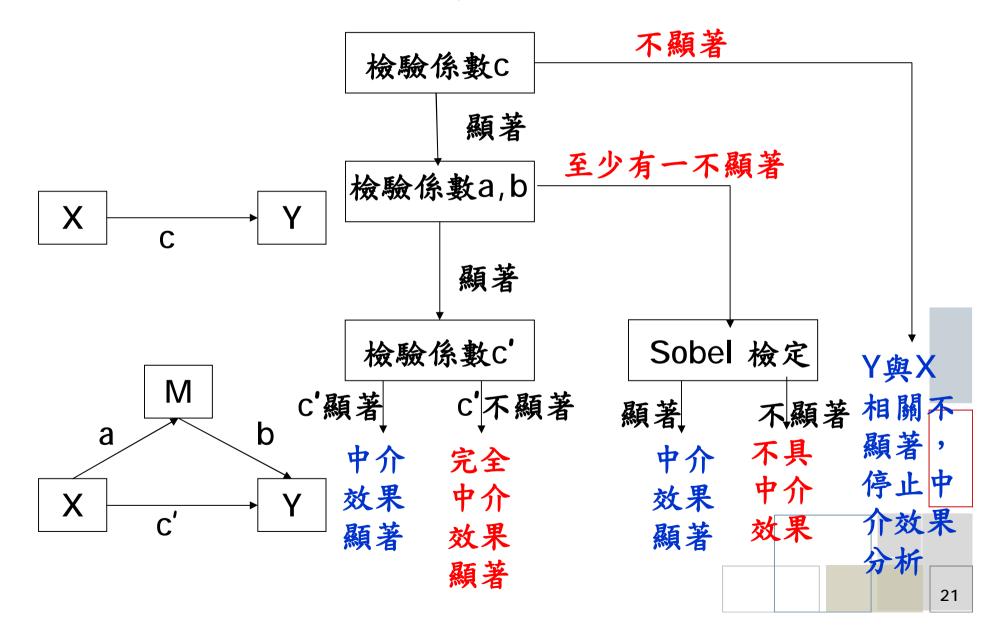
 The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations.


 Journal of Personality and Social Psychology. Vol 51(6), pp. 1173-1182.
- §目前被引用次數為17870次
- §但多數人仍不知這篇在講什麼及如何執行?

研究架構圖

觀察變項的中介效果分析

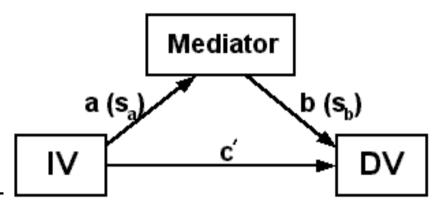

- § M為中介成立的條件為:
- § 1式、2式要顯著, 3式的b要顯著, 3式的c'要小於2式的c
- § 最好的中介效果為C'接近 於O且不顯著


觀察變項的中介效果分析

- § MP= aMO----1
- § FP= cMO----2
- § FP= bMP+c'MO---3

- § MP為中介成立條件為:
- § a、c要顯著,3式的b要顯著,c'要小於c
- § 最好的中介效果為C'接近 於O且不顯著

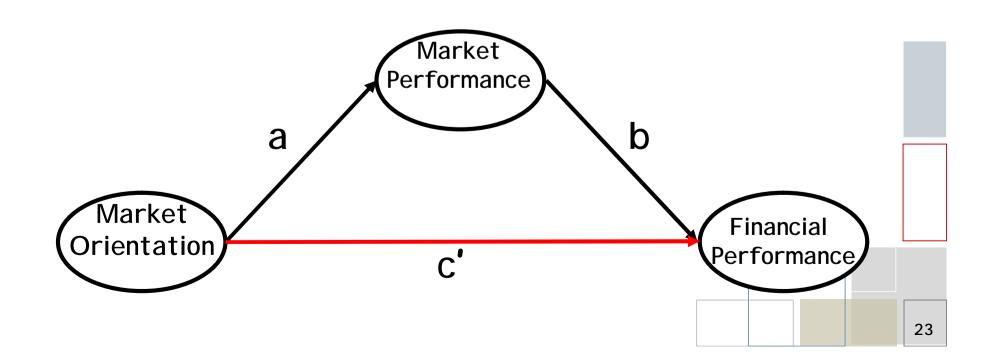
中介效果檢驗程序



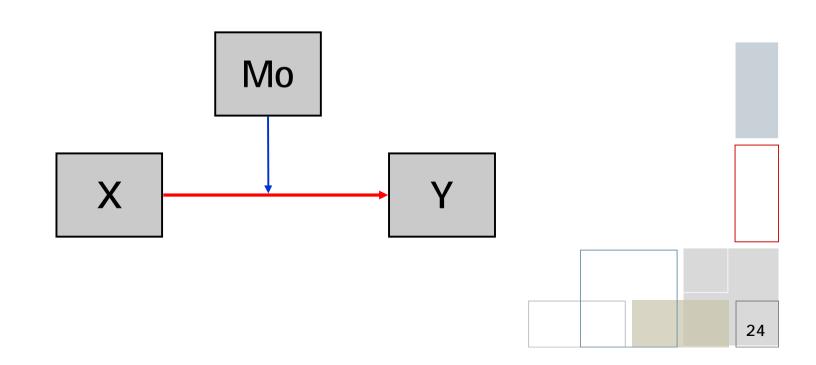
Sobel Test (1986)

§ Sobel 檢驗統計量

$$z = ab / SE_{ab}$$


$$SE_{ab} = \sqrt{a^2 SE_a^2 + b^2 SE_b^2}$$

- §a與b均為非標準化係數值
- §axb等值於c-c
- § SE_a及 SE_b分別為a與b之標準誤
- §在 $\alpha = 0.05$ 下,z值> | 1.96 | 即為顯著


潛在變項的中介效果分析

§以Amos直接採SEM分析,axb>c;亦即 MO對FP的間接效果要大於直接效果;如 此,即MP之中介效果存在。

干擾變數的驗證

§ 將干擾變數與自變數分為連續及類別變數 兩種,並可得四種組合;而應變數必為連續變數。

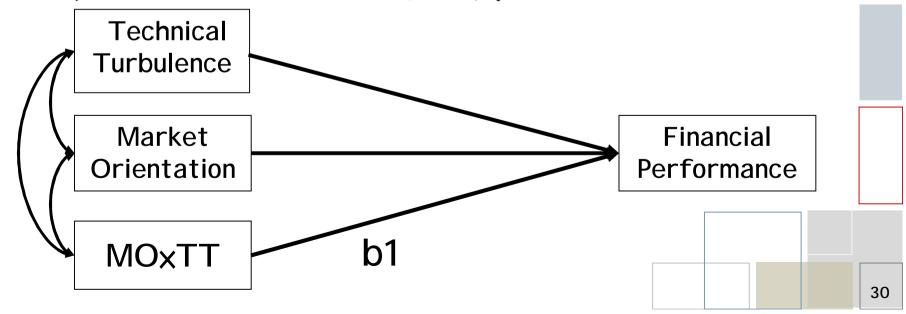
- §假設X、M均為類別變項(性別,成績及格與否),Y為連續變項。
- §採用2-way ANOVA,直接檢定X、M交互作用是否存在,有即是干擾變數。

Case1(cont.)

- § 交互作用與干擾效果雖然是同樣的檢定方式,但其統計意義是完全不同的,干擾效果隱藏著因果關係的存在而交互作用是沒有的。
- § 交互作用兩自變數可以是對稱的,也可以 是不對稱的,亦即任何一個皆可為干擾變 數。
- §在干擾模型中,兩變數是不能互換的。

- § 假設X為連續變項, M均為類別變項 (性別), Y為連續變項。
- § 方法一:(檢驗相關係數)
 - § 干擾變數分成兩群,如男生一群,女生一群, 男、女各跑一次迴歸,得到男、女兩個標準化 係數Γ₁及Γ₂,利用費雪Z轉換比較Γ₁及Γ₂兩者是 否有顯著差異,有即是干擾變數。
- § 缺點
 - § 兩群體之間必須同質 (可用t檢定中的Levene F 同質性檢定)
 - § 干擾變數與依變數之間若衡量誤差變異過大, 則會造成自變數與依變數之間的相關不真實。

§方法二: (檢驗斜率)


§採用男、女兩組迴歸分析之非標準化係數計算, 此法不受到兩組變異數不同質的影響,尤其是探 討因果關係時 (Baron, 1986)。

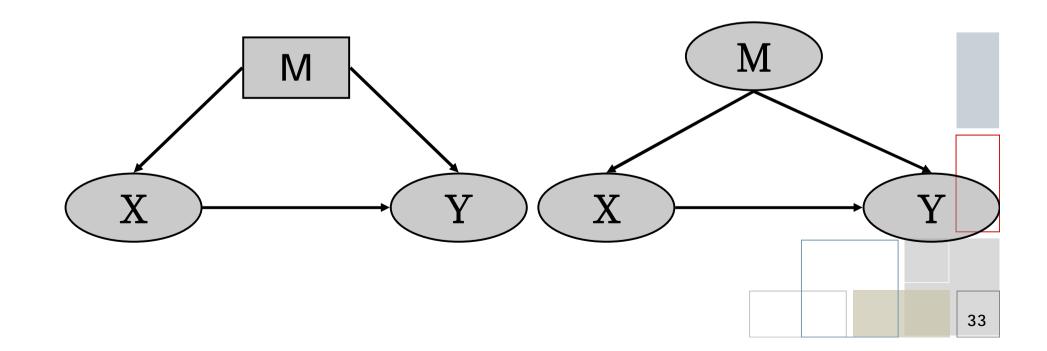
$$z = \frac{(b_1 - b_2)}{\sqrt{se_{b1}^2 + se_{b2}^2}}$$

- § 假設X為類別變項(性別),M連續變項,Y為連續變項 續變項
- § 將X轉為dummy variables
- § Y=X+M+XM (層級迴歸分析)
- § 在SPSS的迴歸依變數放Y,X及M放在自變數, 下一層放入XM,統計量中記得勾選R²改變量檢 定,顯著則代表M為干擾變數。

$$F_{(k_2-k_1,N-k_2-1)} = \frac{(R_2^2 - R_1^2)/(k_2 - k_1)}{(1 - R_2^2)/(N - k_2 - 1)}$$

- § 假設X、M均為連續變項,Y為連續變項
- 1. 可將M化為二分變項,採case2作法
- 2. 直接採用case3的作法
- 3. 採多元迴歸,看b1是否顯著 (ps.: TT及MO 需要先mean centre再相乘)

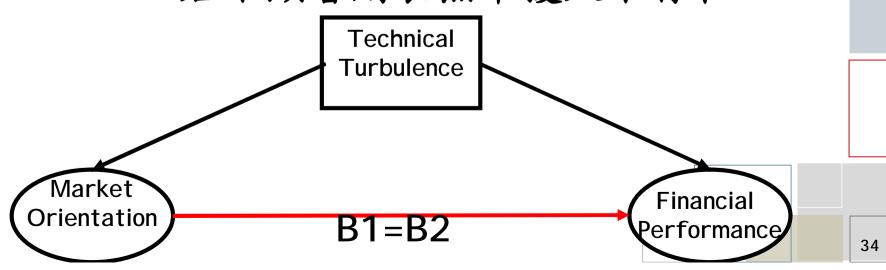
觀察變項的干擾效果分析

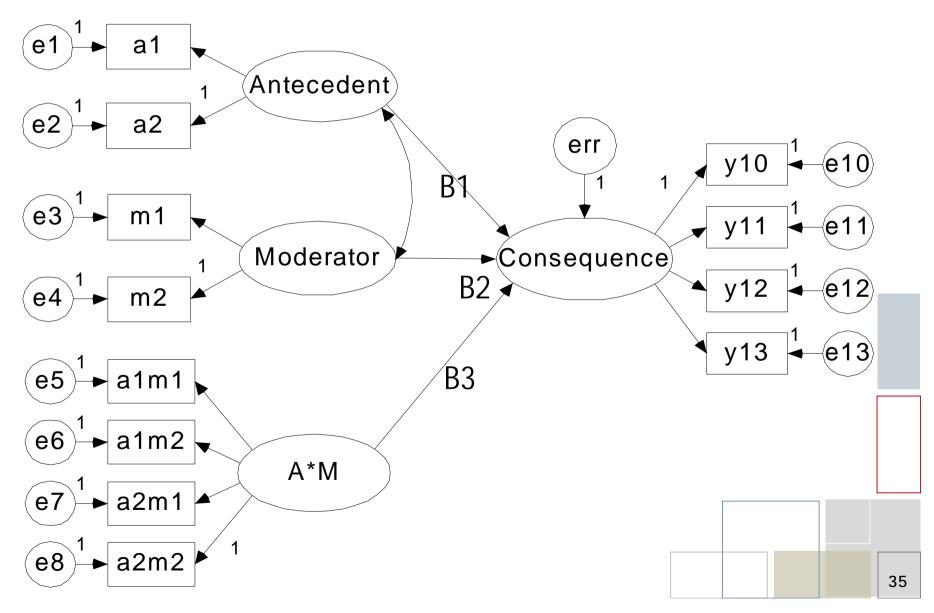

干擾變項	自變項(X)		
(M)	類別	連續	
類別	兩個變數有交互作用的	分組做迴歸,得r ₁ 、	
	變異數分析 (ANOVA), 交互作用即干擾效果。	Γ ₂ ,再利用費雪Z轉 換比較差異顯著性,	
		顯著即有干擾效果	
	自變項改成Dummy,做 Y=aX+bM+cXM+e層級迴歸	層級迴歸分析同左 除了考慮交互項XM	
連續	1.做Y對X和M的迴歸得判定 於數D2	外,尚可以考慮高階	
	係數R ₁ ² 。 2.做Y對X、M和XM迴歸得	交互作用(如XM ² , 表示非線性干擾效果)	
	R_2^2 ,若 R_2^2 顯著高於 R_1^2 ,則 M為干擾變項。		

潛在變項的干擾效果分析

- § 干擾變項可為連續或類別變項,自變數及 應變數為連續變項。
- § 需利用結構方程式進行(以Amos17.0示範)
- § 潛在變項測量時會帶來誤差,所以潛在變項均視為連續變項

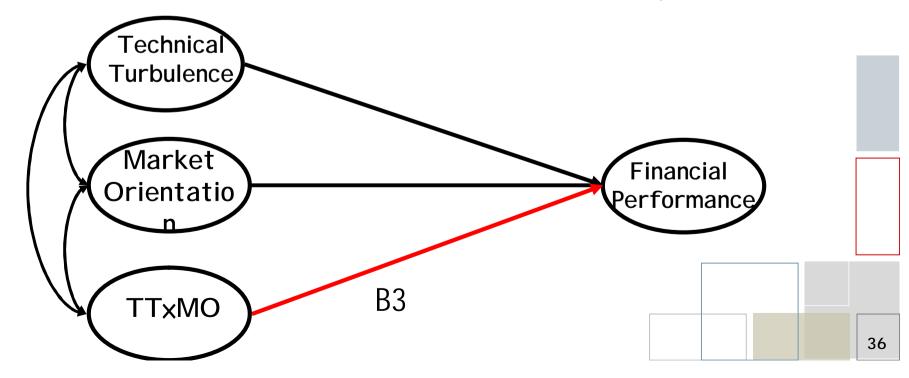
潛在變項的干擾效果分析


- § 因此只考慮以下兩種情形:
- 1. 干擾變項為類別變項
- 2. 干擾變項為連續變項

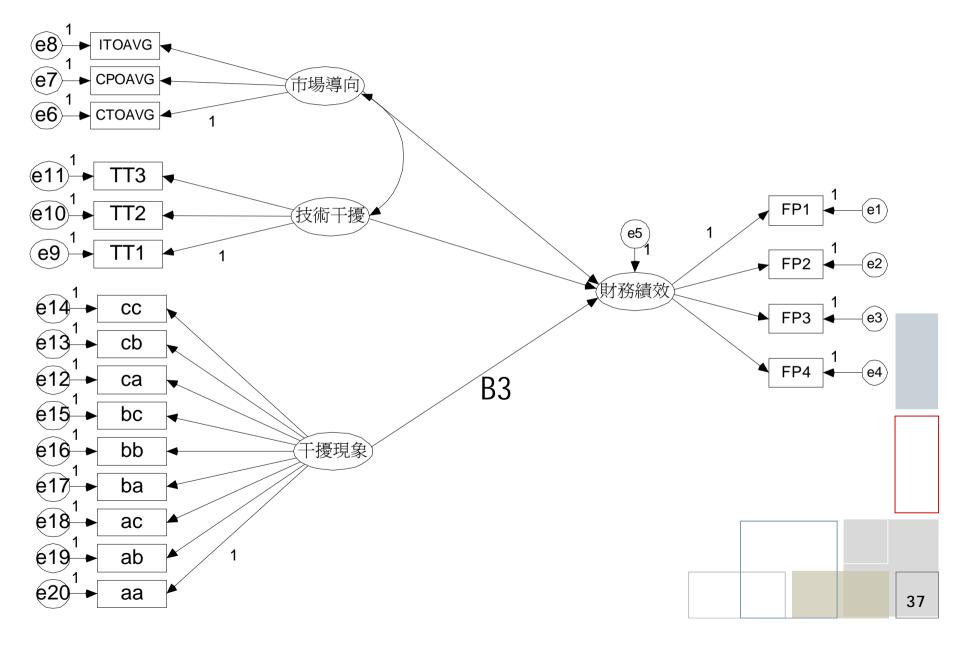

干擾變項為類別變項

§採用Amos群組分析,檢定兩群之間的結構係數、共變異數及衡量負荷量是否有所差異,結果若達顯著,表示有差異,則干擾效果存在。

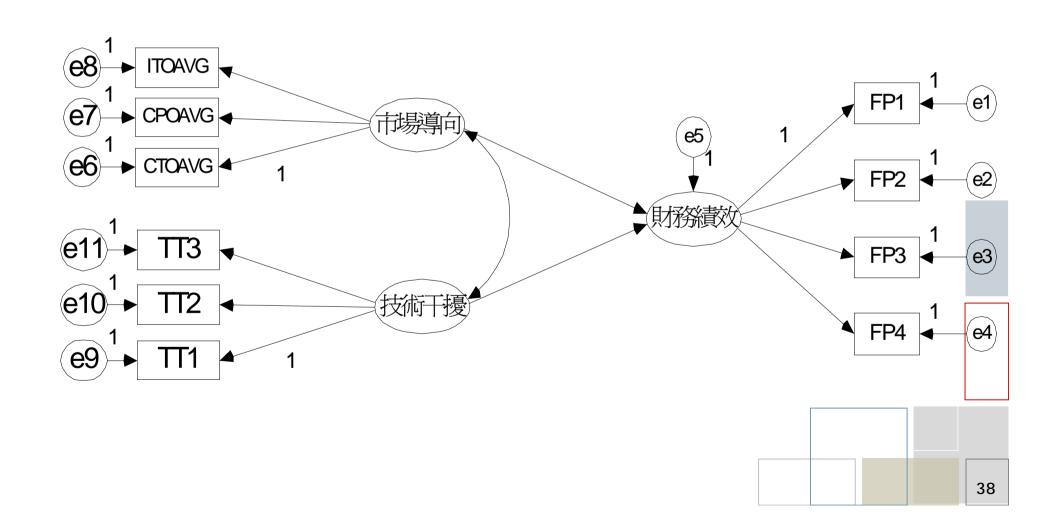
§利用Amos的Manage Models,設定 B1=B2,若不顯著則表無干擾效果存在



<u>潛在變項的干擾效果分析</u> (Kenny & Judd, 1984)



潛在變項的干擾效果分析


- §利用SPSS將自變數(mean center)與干擾變數(mean center)相乘,變成欲檢測干擾效果之變數。
- §利用Amos繪出架構圖(如下)分析

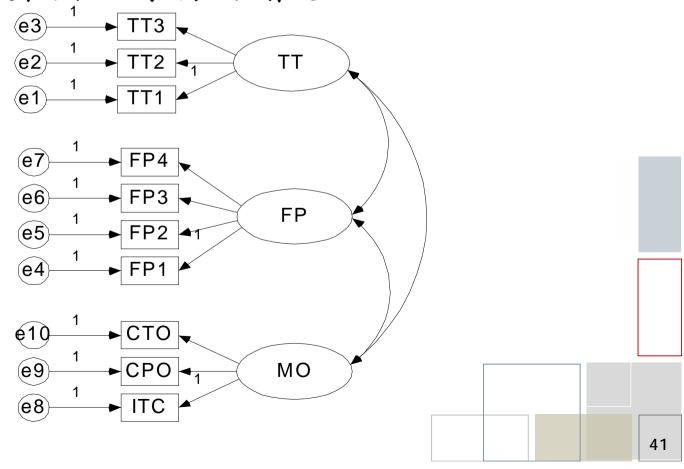
潛在干擾效果分析(有干擾項)

潛在干擾效果分析(無干擾項)

干擾效果判定

- 1. 在有干擾項整體模式分析下,若B3顯著則 干擾效果存在,反之則不存在(有爭議)
- 2. 檢定有干擾項模型的 R^2 及無干擾項的 R^2 ,若 R^2 的改變量達顯著 (F檢定),則干擾效果存在。 $(R^2-R^2)/(l_2-l_2)$

 $F = \frac{(R_2^2 - R_1^2)/(k_2 - k_1)}{(1 - R_2^2)/(N - k_2 - 1)}$


3. 在AMOS分析中,設B3=0,檢驗其卡方改變量是否達顯著,有則是有干擾效果。

潛在變項的干擾效果分析質疑

- §X與M兩變項,可能相關很大也可能相關不大;但交乘項為X與M的線性組合,因此線性組合必定與X,M有很大的共線性存在。
- § SEM以共變異數為基礎的計算方式,將會 造成估計值嚴重的偏誤。

Factor Score Weight (Jonsson, Fan Yang, 1998)

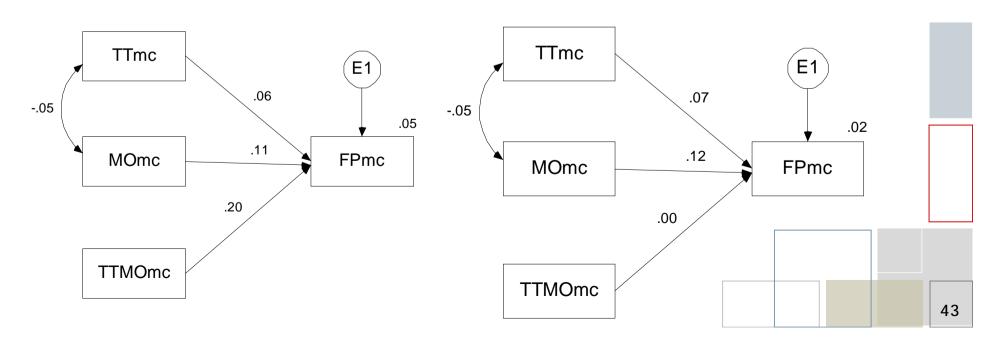
1. 利用CFA算出因素分數權重

Factor score weight (Jonsson, Fan Yang, 1998)

2. 計算因素得點

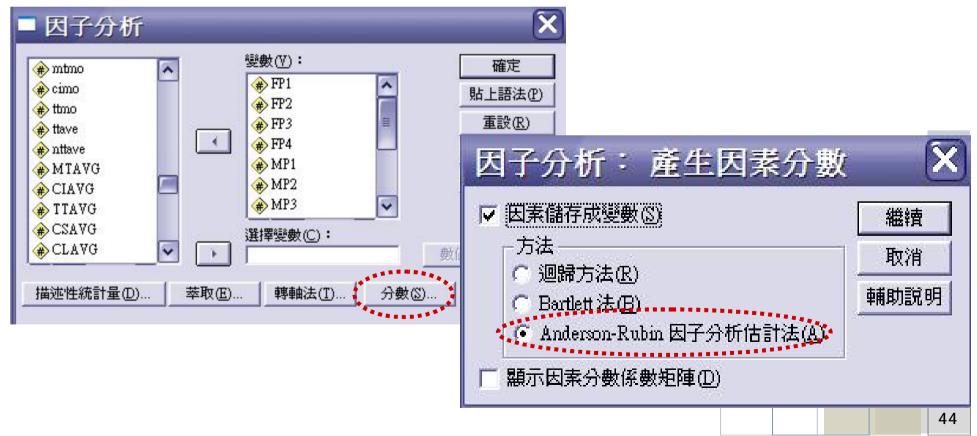
	CTO	СРО	ITC	FP4	FP3	FP2	FP1	TT3	TT2	TT1
MO	.203	.244	.549	.002	.002	.003	.003	002	002	001
FP	.003	.004	.009	.184	.222	.232	.244	.002	.002	.001
TT	002	002	- .004	.001	.002	.002	.002	.373	.371	.124

Factor score weight (Jonsson, Fan Yang, 1998)


3. 複迴歸分析(檢定交乘項是否顯著) 別忘了做power test

chi-square=2.335

chi-square=13.817


dgree of freedom=2

dgree of freedom=3

用SPSS也可求得因素分數

§分析à資料縮減à因子à將構面的題目全部選入à分數à因素儲存成變數 àAnderson-Rubinà繼續à確定

Total Variance Explained

	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	5.098	46.344	46.344	5.098	46.344	46.344	3.169	28.805	28.805
2	2.303	20.941	67.285	2.303	20.941	67.285	3.043	27.667	56.472
3	1.272	11.560	78.845	1.272	11.560	78.845	2.461	22.372	78.845
4	.410	3.727	82.572						

Rotated Component Matrix ^a

		Component	FAC1_1	FAC2_1	FAC3_1
	1	2	.77778	.55864	.11244
FP3	.858		68971	.96224	1.86905
FP2 FP4	.850 .850		-1.20587	.16591	.18048
FP1	.830 .844		.55813		45076
MP1	.0	.869	1.20958		37866
MP3		.856	-1.45942		
MP4		.841			
MP2		.744	1.03476	.75424	51368
ITOAVG			.907		

.868

.863

Undefined error #11401 - Cannot open text file "C:\Program Files\SPSS\en\windows\spss.err": No such Undefined error #11408 - Cannot open text file "C:\Program Files\SPSS\en\windows\spss.err": No such

CPOAVG

CTOAVG

a. Rotation converged in 4 iterations.

中介與干擾變數的比較


	千擾變項(M)	中介變項(M)
1. 研究目的	1. X何時影響Y或何時影 響較大	1. X如何影響Y
2. 關連概念	2. 干擾效果、交互作用	2. 中介效果、間接效果
3. 什麼情況 下考慮	3. X對Y的影響時強時弱	3. X對Y的影響較強且穩 定,但不直覺
4. 典型模型	4. Y=aM+bM+cXM+e1	4.M =aX +e2
5. 模型中M的 位置	5. X,M在Y前面,M可以在 X前面	5. Y =c' X +bM +e3
6. M的功能	6. 影響Y和X之間關係的 方向(正或負) 和強弱	6. M在X之後、Y之前表 一種機制,X透過它 影響Y

中介與干擾變數的比較

	干擾變項(M)	中介變項(M)
7. M與X、Y 的關係	7. M與X、Y的相關可以 顯著或不顯著(後者為 理想)	7. M與X、Y的相關 都顯著
8. 效應	8. 迴歸系數 C	8. 迴歸係數乘積ab
9. 效應估計	9. ^C	9. ^a ^b
10.效應檢定	10.C是否等於零	10.ab是否等於零
11.檢驗策略	11.做層級迴歸分析,檢 驗偏迴歸係數 C的顯著 性(t檢定);或者檢驗測	11.依次檢驗,必要時做Sobel檢驗
	定係數的變化(F檢定)	

中介與干擾的應用時機

- §當兩變數之間有持續的相關存在,但感覺 又沒有那麼直接時,宜考慮是否有中介變 數的存在。
- §當兩變數之間的相關在不同的情形下會有不一致的情形時,直考慮是否有另一變干擾了兩變數之間的相關。

總結

學術研究的最佳統計工具

讓統計變得容易

SPSS & Amos

視覺化的操作介面 豐富的統計方法 易學易用的線上輔助系統 完整的統計分析流程

宏德國際軟體諮詢顧問股份有限公司 http://www.sinter.com.tw/SPSS