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Abstract—In vehicular ad-hoc networks (VANETs), ensuring
passenger safety requires fast and reliable emergency message
broadcasts. The current communication standard for messaging
in VANETs is IEEE 802.11p. As IEEE 802.11p allows carrier-
sense multiple access with collision avoidance (CSMA/CA) in the
media access control (MAC) layer. A large contention window
(CW ) value will increase delay, whereas a small CW value
will increase the probability of collision. Therefore, adaptive
regulation of the CW value is needed to achieve high reliability
and low delay in VANETs, in accordance with variations in
the environment. However, the traditional MAC protocol cannot
achieve the aforementioned requirements. Reinforcement learn-
ing (RL) emphasizes the selection of optimal action according
to observations of the environment to achieve optimal system
performance. In this study, a Q-learning (QL) RL algorithm
based on IEEE 802.11p was used to achieve the requirements
of adaptive broadcasting. Adaptive broadcasting was achieved
based on a reward definition of high reliability and low delay
for the QL algorithm. In this approach, the learning state is
the CW size, the system sets up a Q-table using RL, and the
optimal action is based on the maximum Q-value. The CW size
can be provided with adaptive self-regulation by RL, providing
high reliability and low delay for the broadcast of emergency
messages. We also compared our proposed scheme to other QL-
based MAC protocols in VANETs by performing simulations and
demonstrated that it can achieve high reliability and low delay
for the broadcast of emergency messages.

Index Terms—VANET, IEEE 802.11p, contention window,
reinforcement learning, Q-learning.

I. INTRODUCTION

MOBILE ultra-reliable low-latency communication en-
ables low-delay and high-reliability data exchange and

therefore has applications in unmanned driving, intelligent
transportation systems (ITSs), industrial automation, smart
grids, and vehicle mobile communication networks. A mobile
communication network with high reliability and low delay
can enhance the safety of vehicle travel. It can reduce loss
of life, injuries, and property damage caused by automobile
accidents, as well as losses at the social and economic levels
[1], [2], [3].

Network architectures comprising IVC (inter-vehicle com-
munications) and RVC (roadside-to-vehicle communications)
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are based on and derived from the mobile ad-hoc network
(MANET) and are thus also known as vehicular ad-hoc
networks (VANETs) [4], [5].

To realize the development and implementation of ITSs,
wireless access in vehicular environments (WAVE) systems
are being studied extensively. The communication protocol
of WAVE is IEEE 802.11p, which is a part of IEEE 802.11
that is designed for wireless local area networks. The medium
access control (MAC) protocol of DSRC (Dedicated Short-
Range Communications) and IEEE 802.11p should be capable
of managing large numbers of nodes [6], [7]. However, in a
DSRC-based network, the contention window (CW ) design
cannot adapt dynamically to the traffic. On the other hand,
IEEE 802.11p uses a distributed contention-based carrier-sense
multiple access (CSMA) algorithm and therefore can manage
competition between large numbers of nodes [8].

The safety communication in VANETs takes two forms:
period safety messages, which are called beacons, and event
driven messages, which are called emergency messages. Emer-
gency messages are usually triggered by events and transmitted
by multi-hop broadcasts, also known as decentralized environ-
mental notification messages in the European Telecommuni-
cations Standards Institute (ETSI) standard [9].

The transmission of emergency messages in multi-hop
scenarios involves relaying messages through neighboring
vehicles in a hop-by-hop manner to reach all vehicles in the
affected area. The high mobility of vehicles causes dynamic
changes in the network topology, resulting in transmission
channel competition and collisions during emergency message
delivery. This poses significant challenges in the design of
a multi-hop emergency message delivery mechanism. Strate-
gically selecting the next hop in VANETs is essential for
enhancing the system performance.

In [10], the authors propose a Cooperative Adaptive
Cruise Control Lane Change (CACCLC) controller to
enhance lane changes for CACC in congested traffic,
improving lane change capability, success rate and sta-
bility. In [11], the authors suggest using system dynamics
modeling for mixed traffic flow to gain insight into traffic
dynamics and their effects on traffic conditions. In [12], the
authors introduce a Route Segmented Broadcast Protocol
using RFID technology (RSBP-RF) and proactive relay
vehicle selection to enhance broadcasting efficiency.

In [13], the authors suggest using a probabilistic broadcast
protocol that considers the distance, link availability, and
packet reception rate as weighted probabilities for potential
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relay candidates. In [14], the authors propose a reliable multi-
hop broadcast mechanism using Bayesian networks and unipo-
lar orthogonal codes to ensure high reliability and low delay
in emergency message broadcasts under different channel
conditions. In [15], the authors suggest using an adaptive
topological area partitioning and broadcasting technique to
enhance the reliability of emergency message broadcasts and
beacon retransmissions. In [16], a mechanism for multi-hop
emergency message transmission was proposed, along with
an assessment of the reliability of radio transmitters. In [17],
a multi-hop emergency message broadcast algorithm that
emphasizes the success rate and distance was introduced.

If the problem of collision associated with the broadcast of
emergency information is overcome, then the transmission effi-
ciency will be improved. Thus, vehicles can both immediately
receive emergency information to avoid danger and provide
safety for smart transportation. Therefore, the selection of the
CW value for the IEEE 802.11p backoff mechanism will play
a pivotal role for emergency broadcasts in VANETs. However,
the traditional MAC protocol cannot fulfill the requirements
for high reliability and low delay simultaneously.

Machine learning (ML) is an artificial intelligence method
through which a system learns from past data and experiences.
QL is an RL method, whereas RL is a branch of ML. ML,
RL, and QL are discussed in the existing literature on various
aspects of wireless networks [18], [19], [20], [21], [22], [23].

Reinforcement learning leverages the spatial and temporal
characteristics of nodes to enhance model accuracy. The
system efficiency is consequently enhanced by transmitting
regular messages to neighboring nodes to ascertain the next
optimal hop node [18]. In [19], the authors proposed dy-
namically adjusting the reinforcement learning parameters
and HELLO message intervals to improve the accuracy of
detecting neighboring node positions in flying ad hoc networks
(FANETs).

Previous studies have demonstrated that QL can help com-
munication networks learn their optimal transmission strate-
gies. This technology, in conjunction with a proper learning
time, can achieve performance comparable to those of real-
time statistical communication networks [20]. RL has also
been proposed for the channel access problem of wireless
networks. Amuru et al. [21] optimized the IEEE 802.11
backoff mechanism in the form of a Markov decision process
(MDP) and proposed an RL solution. Liu and Elhanany
[22] used RL to find optimal solutions for efficient channel-
sharing techniques in wireless sensor networks. Wu et al. [23]
explored the use of the QL-based MAC protocol to reduce
transmission delay in VANETs. However, in these past efforts,
the characteristics of broadcasting, convergence problem, and
immediacy of information for the MAC protocol in VANETs
have not been considered.

The main focus of this paper is the design of an adaptive reg-
ulated contention window for emergency message broadcasts
according to traffic for IEEE 802.11p in VANETS. It surpasses
the previous related works because it also illustrates the
following unique features of IEEE 802.11p in VANETS, which
are expected to affect the system performance considerably:

1) multi-hop emergency message broadcasts;

2) an adaptive regulation CW due to environment variation
and related phenomena, such as variation of the number
of nodes and emergency message broadcasts collision
for using same CW for IEEE 802.11p in VANETS;

3) critical requirements for emergency message broadcasts
for IEEE 802.11p in VANETS, such as reliability and
delay;

4) an optimal CW regulation method for emergency mes-
sage broadcasts for IEEE 802.11p in VANETS, such
as machine learning (ML), reinforcement learning (RL),
and Q-learning (QL).

As a result of bullet point 4 mentioned above, the proposed
RL method focuses on adaptive regulation of the CW to
achieve high reliability and low delay for IEEE 802.11p in
VANETS.

RL emphasizes how to act based on the environment to
maximize expected benefits. In a system that operates accord-
ing to an RL algorithm, reward determines the value of an
action, and the value of each action determines subsequent
steps. Therefore, RL is suitable for VANET environments
and is expected to provide high reliability and low delay
for emergency information broadcasts. Hence, in this study,
IVC was used as the framework to develop a highly reliable
and low-delay broadcast control mechanism based on RL for
VANETs.The contributions of our study are as follows.

Firstly, we leveraged an optimal CW size based on RL to
mitigate the collision probability associated with emergency
message broadcasts. If the CW size can be suitably selected
for all broadcasting vehicles, then the probability of successful
broadcasting will be increased.

Secondly, we defined the reliability reward for emergency
message broadcasts for performance optimization, the esti-
mated number of neighbor vehicles and the current CW size
are used to calculate the probability of successful emergency
broadcasting. Each vehicle sends data, the original vehicular
ID, the retransmit vehicular ID, the data sequence number, the
number of transmissions, and the CW size for each emergency
message broadcast by piggybacking. Therefore, each vehicle
can estimate the number of one-hop neighbor vehicles by
overhearing. The reliability reward can then be calculated
using the collected information and the current CW size.

Thirdly, we achieved high reliability and low delay of
emergency message broadcasts for performance optimization,
the weighting parameters of the reliability reward and delay
reward are determined. If high reliability and low CW size are
achieved, then system throughput is maximized and backoff
delay is minimized. We determine the optimal weighting
parameters of the reliability reward and delay reward while
considering reliability and delay simultaneously.

The remainder of this paper is organized as follows.
The system model is described in Section II. The proposed
QL-based high-reliability and low-delay MAC protocol for
VANETs is detailed introduced in Section III. The perfor-
mance of the proposed QL-based MAC for VANETs is eval-
uated and some numerical results obtained by simulation are
presented in Section IV. Finally, the paper is concluded in
Section V.
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II. SYSTEM MODEL

This section introduces our emergency message broadcast
model in a multi-hop VANET. In our scenarios, the following
assumptions apply [24].

1) Each vehicle in our emergency message broadcast model
has a fixed transmission range, which is denoted by R.

2) The vehicles in our emergency message broadcast model
are uniformly distributed over a three-lane highway.

The message broadcast model is utilized to transmit non-
urgent information, such as general communication or data
sharing, on a periodic basis. To save bandwidth and energy,
the broadcast protocol is limited to a one-hop range instead
of broadcasting to all the nodes. The emergency message
broadcast model is similar to the message broadcast model,
but is specifically designed to deliver emergency messages
such as disaster alerts and first aid instructions. The aim is
to reach as many nearby affected vehicles as possible. In this
study, the emergency message broadcast transmission range
was defined within a 3-hop range, with emergency messages
prioritized over general messages. However, this study focuses
solely on emergency message broadcasts.

The agent-environment interaction model explains how ve-
hicle agents perceive and adapt to changes in the VANET
using reinforcement learning. The reliability model exam-
ines potential collisions in emergency message broadcasts
in VANET that lead to decreased broadcast reliability. The
vehicle agent determines its next action by sensing changes in
the environmental state of the map and by using the reliability
and delay values from the reliability model.

A. Emergency Message Broadcast Model

In Fig. 1, the three-lane straight highway scenario in two
directions for our emergency message broadcast model was
set as a one-dimensional model. The emergency message
source vehicle Src triggers an emergency event. Src sends
an emergency message to its one-hop neighbors within its
transmission range r. Then, all the one-hop neighbor vehicles
select one CW value using the QL-based MAC protocol and
broadcast the first emergency message. The two-hop neighbor
vehicles receive the first broadcast emergency message. All
two-hop neighbor vehicles then select one CW value using the
QL-based MAC protocol and broadcast the second emergency
message. The three-hop neighbor vehicles receive the second
broadcast emergency message. Then, all three-hop neighbor
vehicles select one CW value using the QL-based MAC
protocol and broadcast the third emergency message.

In our model, a multi-hop QL-based MAC protocol for
emergency message broadcasts in VANETs is employed to use
a optimal CW value, and then to maximize the probability of
successful broadcasting. In a VANET setting, using optimal
CW values allows vehicles to stagger message broadcast
times, reducing the risk of collisions. The decreased collision
probability improves the likelihood of successful emergency
message broadcasts and reduces message delivery delays. An
increase in successful broadcasts indicates improved reliability
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Fig. 1. Demonstration of emergency message broadcast scenario in multi-hop
VANET.

of emergency message broadcasts. Thus, achieving high reli-
ability and low delay maximizes the probability of successful
broadcasting.

As shown in Fig. 2, after the QL mechanism is executed, the
agent learns the results and decide which action will be used
in the VANET. Each vehicle in the VANET must interact with
other vehicles in the VANET. The agent selects the optimal
action and creates a new situation. Then, the environment
creates a reward after the selected action is executed. The
agent selects the optimal action to maximize the reward. The
procedure is repeated until a maximized reward is achieved.

Here, St represents the contention window size at time t in
VANET, indicating the time vehicles must wait before attempt-
ing to broadcast again after a collision. This factor significantly
impacts channel acquisition efficiency and emergency message
broadcasting effectiveness in VANETs. Rt represents the re-
ward for emergency message broadcasting at time t in the
VANET environment. In this paper, Rt examines factors such
as reliability and delay in emergency message broadcasting
and evaluates the effectiveness of broadcasting emergency
messages at a specific time. In the VANET, at represents the
optimal action chosen by the agent at time t under St after
receiving Rt. This action may involve considerations related to
the reliability and timeliness of emergency message broadcast-
ing. The QL algorithm uses the optimal action to maximize
overall reward, enhancing emergency message broadcasting
performance in VANET.

Vehicle

VANET

t
a

t
R

t
S

Action
State Reward

Agent

Environment1+tS

1+tR

Fig. 2. Agent-environment interaction in an MDP.

Therefore, the reciprocal actions or influences among the
vehicles (agents) in the VANETs and the environment at time
step t are as follows [25], [26].

1) The vehicle in the VANET observes the environment
and obtains the current CW value, St, after one beacon
interval.
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2) The vehicle in the VANET obtains the new Q-table, and
the next action at is determined by itself.

3) at is performed by an emergency message broadcasts
application in the MAC protocol. The vehicle receives
reward Rt+1 reaction after one time step in the VANET
environment.

4) The vehicle in the VANET moves the state from St to
St+1.

B. Reliability of Emergency Message Broadcasting

Reliability is defined as the ability of a system to perform
the specified function within a specified period of time. The
system performance may be affected by the signal interference
when the data transmitted. The interference of emergency
message broadcast in VANETs among one-hop neighbors can
cause unreliability [27].

The single hop reliability issue in VANETs has been in-
vestigated [28]. However, a vehicle broadcasts an emergency
message to its neighbors when an emergency condition is
detected in the VANET in a multi-hop fashion. The reli-
ability of emergency message broadcasts can be modeled
the broadcasting successful probability before the expiry of
maximum hop count. The reliability of emergency message
broadcasts cab be evaluated by the packet loss probability
and hop count as the metrics. The packet loss probability
is a function of the channel error rate, message collision
probability, and number of vehicles in the VANET. When
the hop count for emergency message broadcasts increases,
the packet loss probability increases and reliability decreases.
The packet loss probability increases when the number of
contending vehicles in the VANETs increases. Reliability is
defined as the successful probability of emergency message
broadcasts [27].

Sattar et al. [29] reported that in IEEE 802.11p, a vehi-
cle will enter the backoff time mode when its channel is
busy. They assumed that each emergency message could be
broadcasted only once. While the emergency message is being
broadcasted by the vehicle, the state of the channel (i.e.,
whether it is busy) can be determined. For IEEE 802.11p,
the range of CW values for emergency message broadcasts
in VANETs is [0, CWmin]. The no-collision probability of
each emergency message broadcast in a VANET is defined as
follows [29]:

P ′c = (1− 1

CWmin
)n−1, (1)

where CWmin is the minimum size of the contention
window, n = ρπr2 denotes the expected value of the number
of neighbor vehicles in the VANET, ρ is the number of vehicles
per unit area, and r is the transmission range of the vehicle.

Then the reliability that a vehicle can successfully receive
a packet is defined as follows [29]:

R = 1− (1− P ′c)n. (2)

However, in general, the total number of vehicles in a
VANET cannot be known, and the vehicles will not be evenly
distributed. The number of vehicles per unit area cannot be

known. Furthermore, the number of broadcasts for each emer-
gency message in a VANET should not be limited to only one.
In this study, the reward generated by the maximum number
of broadcasts of emergency messages was included in the
definition of the reliability reward. Therefore, the probability
of successfully broadcasting an emergency message at each
time can be defined as follows:

P tsuc = (1− 1

CWt
)d

t
avg−1, (3)

where CWt is the size of the contention window at time
t. The term dtavg can be estimated by the average number of
neighbor vehicles based on overhearing the vehicle number,
data sequence number, and rebroadcasting times, which are
carried by rebroadcasts from the neighbors. dtavg for each
vehicle will vary over time due to different relative mobility
and corresponds to CWt at time t. Then, P tsuc will also vary
over time due to the differences in dtavg and CWt at time t.

Then, the reliability that a vehicle can successfully receive
a broadcasting emergency message at time t can be redefined
as follows:

Reltrcv = 1− (1− P tsuc)d
t
avg . (4)

The reliability of emergency message broadcast in a VANET
depends on the success probability of message transmission
and number of neighboring vehicles. In a VANET, the number
of neighboring vehicles can be estimated using a fixed broad-
cast transmission distance. The probability of node collision
can be reduced by adjusting the competition window size.
Therefore, adjusting the competitive window size can improve
the reliability of emergency message broadcasts by decreasing
the collision probability.

III. QL-BASED HIGH-RELIABILITY AND LOW-DELAY
MAC PROTOCOL FOR VANETS

For our proposed protocol, an IVC architecture was de-
signed, and an adaptive broadcast control mechanism for
emergency messages based on RL for use in VANETs was
developed. The neighbor vehicle broadcasts the received emer-
gency message, which contains the original vehicle ID, current
vehicle ID, data number, transmission times, and CW value,
by piggybacking. All neighbor vehicles can then learn the
CW values used by other neighbor vehicles and the numbers
of rebroadcasting by overhearing. The mechanism for the
selection of the optimized CW value is designed based on
a QL reward mechanism to achieve high reliability and low
delay in the VANET. Table I lists the symbols used in the
performance evaluation of our proposed protocol.

A. Control Channel Descriptions

For our proposed QL-based µRr+νRd-MAC protocols for
VANETs, time is divided into several time slots. Each beacon
interval has two periods: a backoff period and a data period. As
shown in Fig. 3, each vehicle wants to broadcast an emergency
message after receiving the original emergency message from
the original vehicle. It select a backoff time according to the
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TABLE I
SYMBOLS FOR PERFORMANCE EVALUATION.

St State at time t
Rt Reward at time t
at Action at time t
St+1 State at time t+ 1
Rt+1 Reward at time t+ 1
at+1 Action at time t+ 1
a Action
P ′
c No-collision probability of broadcasting

CWmin Minimum size of the contention window
n Expected number of neighboring vehicles
ρ Number of vehicles per unit area
r Transmission range of the vehicle
π Circumference ratio
R Reliability for packet reception
P t
suc Broadcast success probability at time t

CWt Contention window size at time t
CWt+1 Contention window size at time t+ 1
dtavg Average neighbors at time t
Reltrcv Reliability of message reception at time t
µ Regulated weight for reliability reward
ν Regulated weight for delay reward

Q(s, a) Q-value of state s and action a
π(s) Policy at state s

argmax
a

Q(s, a) Action maximizing the Q-value in state s

Tsimu System simulation time
Trun Running time
λ Decay constant for ε-greedy method
ε Value of ε
Pε Selected randomly probability from (0, 1)

CWat+1 Contention window size for action at+1

Nmax Maximum number of emergency broadcasts
Rrel Emergency broadcasts reliability reward
Rrb Reward of rebroadcasting time
Rd Delay reward
Rtol Total reward
γ Discount factor
α Learning rate
ζnrb Total throughput from the 1st to nrbth broadcasts
RCH Data transmission rate for an unlicensed channel
nrb Broadcasting times
t
(i,j)
trans Time of jth vehicle for ith successful broadcast
ni
succ Number of vehicles for ith successful broadcast
t
(i,j)
d Delay of jth vehicle for ith successful broadcast
T

nrb
d Average delay of nrb successful broadcast
i ith successful broadcast
j jth vehicle

QL-based µRr+νRd-MAC protocol and then sends it. The
control channel of the QL-based µRr+νRd-MAC protocol for
VANETs is shown in Fig. 3. The two phases of the proposed
QL-based µRr+νRd-MAC protocol can be described in detail
as follows.
• Backoff period: In the backoff period, each vehicle sends

the emergency message by selecting one CW value
according to the proposed high reliability and low delay
QL-based MAC protocol. The neighbor vehicles that
receive the emergency message broadcast it again using
the optimal CW value for the VANET.

• Data period: After the backoff period, each vehicle in
the VANET can transmit an emergency message. The
original vehicle ID, retransmit vehicle ID, data sequence,
the number of transmissions, and CW value will be
included in the emergency message by piggybacking.

DATA
DIFS

ACK

DIFS
Backoff-
period

Node A

Node B

Backoff-
period

Time

DATArcv

Q-Learning Agent 

CW adaption

retransmission

Current CW value

1. Original vehicular ID

2. Retransmit vehicular ID 

3. Data sequence

4. Number of transmission

5. CW

Fig. 3. QL-based high reliability and low delay MAC (QL-based µRr+νRd-
MAC) protocol.

B. Action Selection

The main purpose of applying QL in VANETs is to achieve
high reliability and low delay system performance. The opti-
mized action is selected using the optimized Q-value of the QL
mechanism. The emergency message broadcasts are performed
using different CW values (state S). The optimized CW value
is determined based on overhearing the rebroadcast results of
neighbor vehicles. The experience gained from the CW value
achieves the mechanism of self-learning channel access control
proposed in this paper.

Watkins and Dayan [20] proved that as long as all actions
are performed repeatedly in all states (state S, action a),
QL can make the system converge and achieve the goal of
a convergence probability of 1. In [20], the generated Q-
table is related only to the number of CW used times, to
fulfill the requirements for fairness. However, this mechanism
cannot guarantee that the system will be able to achieve high
reliability and low delay.

In our study, to maintain the original IEEE 802.11p imple-
mentation specification, the BEB algorithm was also adopted
for the intervals of the CW values. In this approach, the seven
CW values are [3, 7, 15, 31, 63, 127, 255]. Therefore, seven
states [3, 7, 15, 31, 63, 127, 255] of QL and three kinds of
actions exist. Emergency messages will be transmitted through
these three actions to learn the optimized Q-value. Here, the
states and actions are similar to the defined values in [7],
[30]. The selected CW is the common value of all collected
CW values for all the one-hop neighbors to achieve fairness
in [7], [30]. In this study, the CW value was adaptively
regulated based on the reward function for reliability and delay
requirements.

In state CWt, the vehicle agent takes the optimized action
by observing the optimal Q-value in the Q-table and enters
state CWt+1. The state will then be changed by the action
selection, as follows:

CWt
a∈((CWt−1)/2,CWt,2∗CWt+1)−−−−−−−−−−−−−−−−−−−−→ CWt+1. (5)

The equation shows that in a VANET, when a vehicle node
agent broadcasts emergency messages, it must use Q-learning
to select the action at with the highest Q value from the Q
table. For a ∈ ((CWt − 1)/2, CWt, 2 ∗ CWt + 1), the next
action a is chosen from the above three options to determine
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the best action a. The QL action a determines the optimal
competition window size for selecting the next emergency
message broadcast to prevent collisions.

One of the actions with the largest estimated value is
selected by the simplest action selection method. The action
is selected randomly when there are many “greedy” actions.
The selection mechanism for a greedy action can be presented
as [25]:

π(s)
.
= argmax

a
Q(s, a), (6)

where argmax
a

denotes that the expression is maximized

under action a.
However, first convergence cannot be achieved by continu-

ous use of the greedy mechanism. Moreover, the greedy mech-
anism cannot correctly discover all pairs of (State,Action).
On the other hand, pairs of (State, Action) will be ongoingly
discovered when the random mechanism is used. However, the
random mechanism for the controller is suboptimal. A pro-
posed compromise is to utilize the ε-greedy method between
random and greedy mechanisms [25]. The ε-greedy method is
executed with a probability of 1. Good system performance
ensures a balance between exploration and exploitation. The
value of ε is defined as follows:

ε = e
−λ Trun

Tsimu , (7)

where Trun is the running time and Tsimu is the system
simulation time. In our proposed QL-based MAC for VANETs,
convergence to an optimal policy is guaranteed by the decay
function.

C. Reward function formulation

Pressas et al. [7] proposed the use of constant rewards,
specifically, [1/7, 2/7, 3/7, 4/7, 5/7, 6/7, 1]. These rewards are
defined according to the order of the number of used times of
different CW values. However, this method cannot reflect the
characteristics of high reliability and low delay for emergency
message broadcasts in VANETs.

In this study, the reliability reward was redefined according
to the requirements for reliability, the transmission frequency
reward was defined according to the number of emergency
message broadcasts, and the delay reward was defined ac-
cording to the requirements for low delay. These defined
rewards help the proposed QL-based MAC protocol achieve
high reliability and low delay in VANETs.

1) Reliability reward: Each vehicle can receive the se-
quence number and number of rebroadcasting of each emer-
gency message by piggybacking. Each emergency message
will be sorted according to the number of rebroadcasts. A
higher number of rebroadcasts will yield a lower reward,
whereas a lower number of rebroadcasts will yield a greater
reward. In this way, the number of rebroadcasting of emer-
gency message for each vehicle will remain fair.

If the numbers of transmissions are [1, 2, · · · , Nmax], then
the rewards of rebroadcasting time Rrb will be [1, (Nmax −
1)/Nmax, · · · , 1/Nmax], where Nmax denotes the maximum
number of emergency broadcasts. Rrel for each vehicle will

vary over time due to different P tsuc and CWt at time t under
different Rrb. Then, the reward of reliability for emergency
message broadcasts can be defined as follows:

Rrel = [1− (1− P tsuc)d
t
avg ]Rrb. (8)

Here, P tsuc denotes the likelihood of a vehicle effectively
transmitting an emergency message to adjacent vehicles.
Hence, it is essential to assess the dependability of the broad-
casting procedure. dtavg has a direct influence on the impact
and effectiveness of broadcasting. A higher value of dtavg
indicates that each vehicle has a greater number of neighbors
to whom messages can be forwarded, thus enhancing the prob-
ability of message broadcasting. Rrb introduces the temporal
dimension into reward calculations (Eq.(8)) and acknowledges
the urgency of emergency message broadcasting.

2) Delay reward: The delay of an emergency message
broadcast in a VANET has a close relationship with the CW
value: if the CW value is small, then the backoff delay will
be small, whereas if the CW value is large, then the backoff
delay will be large.

In this study, a large CW value will result in a low delay
reward Rd, whereas a small CW value will result in a high
Rd. CW values of [3, 7, 15, 31, 63, 127, 255] correspond to
Rd values of [1, 6/7, 5/7, 4/7, 3/7, 2/7, 1/7] [7].

3) Total reward: To be consistent with the objective of the
QL algorithm, the agent is to obtain the maximum reward for
each iteration of learning. If the reward is small, then the action
is not good. Therefore, the total reward of high reliability and
low delay for emergency message broadcasts in VANETs can
be defined as the sum of the high-reliability reward and low-
delay reward with two adjusting weighting parameters:

Rtol = µRrel + νRd, (9)

where µ and ν are regulated weighting parameters for
the reliability and delay reward, respectively. If µ increases,
then Rtol needs to put more emphasize on the reliability for
emergency message broadcast and the system throughput will
be increased. If ν increases, then Rtol needs to put more
emphasize on the delay for emergency message broadcast and
the end-to-end delay will be decreased.

This study examines performance indicators, such as relia-
bility and latency, across different scenarios. A tradeoff exists
between reliability and latency. The weighting parameters are
assessed and adjusted based on the observed performance
metrics. This discussion focuses on determining the optimal
parameters by considering the number of vehicles and topol-
ogy structures to achieve high reliability and low latency. We
adjusted the parameters µ and ν based on the stability of the
state for different numbers of vehicle agents. First, we set µ
to one and ν to zero to guarantee positive reliability returns
during the learning process. We set µ to 0 and ν to 1 to ensure
positive returns on transmission delay during the learning pro-
cess. During the extreme adjustment processes, we observed a
significant difference in system throughput and delivery delays
caused by reliability improvements. Subsequently, we adjusted
µ and ν while monitoring the changes in Rtol during the
simulation. The vehicle agent uses QL to maintain learning
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and achieve stability. Finally, the system is monitored to assess
whether the throughput and delay for emergency message
broadcasts reach the optimal values to determine the values
of µ and ν.

In general, the discount factor γ is set to range from 0.6 to
0.99 [30]. Its value is considered to be part of the problem.
Additionally, the learning speed increases in accordance with
the increases of learning rate α and vice versa. No new
messages are generated when α is 0. On the other hand, only
the most recent new message will be considered when α is 1.

In the QL-based MAC protocol for VANETs, the action
is selected based on Pε. The CW value selects one value
randomly from ((CWt − 1)/2, CWt, 2 ∗ CWt + 1) when
Pε < ε. Otherwise, the action is determined by the controller
(Eq.(6)). Pε is selected randomly from (0, 1).

Expanding on the prior design, each state has the potential
to display a distinct reward gradient, presenting a challenge for
the agent in addressing variations in gradients across states. A
more efficient reward function not only yields greater informa-
tion, but also markedly expedites the convergence speed of QL
algorithms. It is important to note that rewards customized for
specific objectives adapt dynamically in response to the feed-
back received. This paper introduces the proposed QL-based
µRr+νRd-MAC protocol, which is designed to accelerate the
convergence of CW in the network, with the goal of achieving
high reliability and low delay objectives.

Algorithm 1: QL-based µRr+νRd-MAC Protocol

01: Initialize Q0(CW, a) at t = 0
02: if Trun < Tsimu then
03: ε, α ←− decay function
04: else
05: ε, α ←− constant
06: end if

07: procedure Action-selection(CWt)
08: randomly select Pε ∈ random (0, 1)
09: if Pε < ε then
10: at+1 ←− random ((CWt − 1)/2, CWt, 2 ∗ CWt + 1)
11: else if Pε ≥ 1− ε then
12: at+1 ←− aπ
13: end if
14: CWt+1 ←− CW at+1

15: end procedure

16: procedure Feedback(CWt+1, at+1)
17: each vehicle sends the Src ID, broadcasting vehicle ID,

CW , and rebroadcasting times by piggybacking.
18: each vehicle collects the information about its neighbors

by listening.
19: each vehicle estimates dtavg .
20: each vehicle calculates P tsuc.
21: each vehicle calculates Rrb.
22: each vehicle calculates Rrel of Eq.(8).
23: Rrel = [1− (1− P tsuc)d

t
avg ]Rrb

24: CW values of [3, 7, 15, 31, 63, 127, 255] corresponds

Rd of [1, 6/7, 5/7, 4/7, 3/7, 2/7, 1/7].
25: each vehicle calculates Rd.
26: each vehicle calculates Rtol of Eq.(9).
27: set µ and ν.
28: µ and ν are corresponding parameters for the reliability

and delay reward, respectively.
29: Rtol = µRrel + νRd
30: update Q(CWt+1, at+1)
31: Action-selection(CWt+1)
32: end procedure

Algorithm 1 outlines the steps for our proposed QL-
based µRr+νRd-MAC protocol for the emergency message
broadcast mechanism in VANETs based on reinforcement
learning with contention estimation. The following instruc-
tions outline each step.

1) Initializing Q-Values in Q-Learning (Step 1): The
initialization of Q-values impacts how vehicle agents
balance exploration and exploitation, the speed of
convergence, and the quality of the learned strategy.
Here, Q0(CW, a) is set to encourage thorough explo-
ration, ensuring that vehicle agents can effectively
learn the optimal strategy for emergency message
broadcasting through comprehensive exploration.

2) Decay function (Steps 2-6): Initially, a high ε value
ensures thorough exploration of the state-action
space. As ε decreases, vehicle agents prioritize ex-
ploiting high-reward behaviors they are familiar
with. A constant value for ε is established after a
specific simulation time to ensure the adaptability of
vehicle agents and prevent premature convergence-
related system performance issues.

3) Action-selection (Steps 7-15): Vehicle agents balance
exploration and exploitation using the QL-based
µRr+νRd-MAC protocol with an ε-greedy strategy.
During exploration, vehicle agents randomly select
contention window sizes to explore new actions. Vehi-
cle agents utilize the Q-learning algorithm to choose
actions with the highest Q-values. By balancing
exploration and exploitation, the optimal contention
window size is selected to improve the efficiency of
emergency message broadcasting in VANETs.

4) Information collection (Steps 17-19): Vehicle agents
share their state and actions with neighbors through
piggybacking. They collect data from nearby vehicles
by monitoring the network. The collected data is
utilized to calculate the average number of neighbors,
aiding in understanding network conditions and opti-
mizing broadcast strategies to enhance the reliability
of emergency message broadcasting in VANETs.

5) Probability calculation (Steps 20-21): Each vehicle
agent assess the effectiveness of its broadcasting
strategy using success probability and broadcast re-
ward. Transmission success assessment evaluates the
probability of successful emergency message broad-
casts. Reward calculation quantifies the effectiveness
of broadcasting and impacts the learning process.
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This optimizes the broadcast strategy by accurately
assessing and improving the reliability and efficiency
of emergency message broadcasting in VANETs.

6) Reliability reward calculation (Steps 22-23): The
reliability reward is calculated by considering the
probability of successful transmission to neighbors
and the effectiveness of rebroadcasting. This en-
hances the overall performance and robustness of
VANETs.

7) Delay reward calculation (Steps 24-25): Vehicle
agents assign delay rewards based on predefined
contention window sizes to quantify the timeliness
of emergency message broadcasting. This ensures
a balance between reduced delay and improved
reliability in emergency message broadcasting in
VANETs.

8) Total reward calculation (Steps 26-29): The strategy
for broadcasting emergency messages by vehicle
agents combines reliability and delay rewards. The
proposed Q-learning algorithm utilizing total reward
helps to determine the optimal balance between re-
ducing delay and enhancing reliability in emergency
message broadcasting.

9) Convergence (Step 30): The vehicle agents update
Q-values based on the total reward. This allows
the system to learn from experience and converge
towards the optimal solution over time.

10) After completing the convergence step, the process
returns to Action-selection. Vehicle agents determine
the contention window size for the next emergency
message broadcast based on the current state and
learned knowledge represented by Q-values.

IV. PERFORMANCE EVALUATION OF A VANET

We ran our simulation programs on a computer with a single
CPU (Intel Core i7-9700K) and a single GPU (NVIDIA
Quadro RTX 4000). We used Keras as the learning platform
to train neural networks [31]. The simulation results of our
proposed QL-based µRr+νRd-MAC protocol as applied in
the VANET are presented in this section. The simulation was
implemented using the C an Python programming languages.

For QL-based Rcce-MAC [7], the optimal CW value is
based on fairness and cannot be regulated according to the
broadcast traffic. In addition, selecting the CW value based
on the order of CW usage times cannot fulfill the requirements
of reducing transmission delay and improving the reliability
of emergency message broadcasts. By contrast, for QL-based
RcceRd-MAC [7], the reward is the product of fairness and
delay reward, thus achieving high fairness and low delay in
VANETs.

In this section, the system performance of QL-based
µRr+νRd-MAC will be compared with those of other pro-
tocols. Here, the vehicles in each VANET exhibit a multi-
hop relationship. For our proposed QL-based µRr+νRd-MAC
protocol, the CW value is optimized according to the reliabil-
ity and delay reward. The bandwidth of the unlicensed band
channel is 2 Mbps.

In the simulations, the number of vehicles was 50 or 100
stations and one vehicle broadcasted an emergency message to
its one-hop neighbor vehicles. The one-hop neighbors for 100
stations had a high density in the bounded region. The bounded
region was a three-lane highway with a length of 1200 m and
a square region with an area of 200 × 200 m2. The original
emergency message broadcasts vehicle generated 32 packets
per second. The mobility model was a Krauss model with
default parameters (σ = 0.5, τ = 0.1) [32]. All vehicles were
placed on the three-lane highway with mobility velocities of
22 m/s ∼ 28 m/s. The number of one-hop neighbors for
each vehicle varied over time due to their different relative
mobilities. Table II outlines the other parameters of all QL-
based MAC protocols tested in the VANET simulations.

With regard to training and learning for QL, the discount
factor γ was fixed at 0.9 and the learning rate α was fixed
at 0.1. The simulation time was 100,000 s. Five different
topologies were created using five seeds, and all simulation
results are presented as the average values for these five seeds.

TABLE II
PARAMETERS FOR OUR PROPOSED QL-BASED µRR+νRD-MAC

PROTOCOL.

Parameter Value
Simulation time 100,000 s

Number of vehicles 10, 50, 60, 70 ,80, 100, 200
Three-lane highway length 1200 m

Square area 200x200 m2

Transmission range of vehicle 100 m
Channel data rate 2 Mbps

Original message broadcasts rate 32 pkt/sec
Time slot 13 µs

Maximum times of rebroadcast (Nmax) 3
Rebroadcasting times (nrb) 1, 2, 3

Discount factor (γ) 0.9
Learning rate (α) 0.1
Mobility model Krauss model (σ = 0.5, τ = 1)
Vehicle velocity 22 − 28 m/s

Vehicle acceleration ability 2.6 m/s2

Vehicle deceleration ability 4.5 m/s2

A. Metrics of Emergency Message Broadcasting

1) Throughput: When emergency message broadcasts re-
liability improves, its success probability also increases. As
the probability of successful broadcast increases, the message
delivery ratio also rises, maximizing system output. Therefore,
system throughput is used as a performance indicator to
investigate if reliability has been optimized.
Let t(i,j)trans denote the transmission time of the jth vehicle for
the ith broadcast of a successful emergency message in the
VANET. Then, ζnrb

is the sum of throughput from the 1st to
nrbth broadcasts in the VANET and can be defined as follows
[33]:

ζnrb
=
RCH

∑nrb

i=1

∑ni
succ
j=1 t

(i,j)
trans

Tsimu
, (10)

where RCH is the data transmission rate for an unlicensed
channel, Tsimu is the system simulation time, and nisucc de-
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Fig. 4. System throughput of emergency message broadcasts for QL-based µRr+νRd-MAC comparison with other MAC protocols for different number of
vehicles in VANET.

notes the number of vehicles for the ith successful emergency
message broadcast in the VANET.

2) Delay: The average delay of each successful emergency
broadcast with nrb broadcasting times is denoted by Tnrb

d . Let
t
(i,j)
d be the delay of the jth vehicle for the ith broadcasting

for a successful emergency message in the VANET. The value
of Tnrb

d can then be computed as follows [34]:

Tnrb

d =

∑nrb

i=1

∑ni
succ
j=1 t

(i,j)
d∑nrb

i=1 n
i
succ

. (11)

B. Sensitivity analysis on the number of vehicles

In a VANET, the probability of emergency message broad-
casts among vehicles increases with the growing number
of vehicles. This also enhances the likelihood of message
rebroadcasting through adjacent nodes, thereby enhancing the
overall network throughput and reducing broadcast delays.
As the number of vehicles increases and the system nears
saturation, an excess of vehicles could lead to the occurrence
of emergency message broadcast storms. The occurrence of
such storms can lead to traffic congestion, accidents, reduced
system capacity, and consequently, delays in emergency mes-
sage broadcasts.

1) Throughput measurement: In a VANET on a three-lane
highway, emergency message broadcast can be accelerated and
enhanced with more nearby vehicles. This phenomenon en-
hances the overall network throughput. Hence, as the number
of vehicles in a VANET on a three-lane highway increases, it
enhances the potential for emergency message broadcast, in-
troduces multiple broadcast paths, and offers more redundancy
opportunities for relay nodes. This enhances system reliability
and throughput. Therefore, based on Fig. 4, the proposed QL-
based 0.9Rr+0.1Rd-MAC method for a three-lane environment
with 50 nodes achieves a throughput range of 0.639 – 0.785

Mbps. When the node=200, the throughput ranges from 0.688
to 0.875 Mbps.

Additionally, as shown in Fig. 4, for a three-lane highway
VANET, the system throughput increases with the number
of vehicles, regardless of the MAC protocol used. When the
number of nodes is between 50 and 200, the system throughput
continues to increase as the vehicle density increases, indicat-
ing that the system has not reached saturation. This topic is
closely related to the topology. In the following discussion,
we further explain the saturation point problem by examining
how various space distributions affect the system throughput.
In the figure, QL-based µRr+νRd-MAC indicates that the
system throughput remains stable as the simulation progresses.
However, it is anticipated that the system throughput of QL-
based Rcce-MAC and QL-based RcceRd-MAC will decrease
as the simulation progresses.

TABLE III
SYSTEM THROUGHPUT OF EMERGENCY MESSAGE BROADCASTS FOR

QL-BASED µRR+νRD-MAC COMPARISON WITH OTHER MAC
PROTOCOLS IN 100-VEHICLE VANET.

100− vehicle First Second Third
Rr-MAC vs. Rcce-MAC 37.9 % 37.5 % 31.1 %

0.9Rr+0.1Rd-MAC vs. Rcce-MAC 34.0 % 39.7 % 42.2 %
0.5Rr+0.5Rd-MAC vs. Rcce-MAC 26.5 % 16.7 % 19.3 %

100− vehicle First Second Third
Rr-MAC vs. RcceRd-MAC 54.9 % 93.2 % 93.8 %

0.9Rr+0.1Rd-MAC vs. RcceRd-MAC 60.1 % 107.6 % 105.5 %
0.5Rr+0.5Rd-MAC vs. RcceRd-MAC 48.2 % 59.7 % 59.8 %

As shown in Table III, the greatest improvements in system
throughput for the first broadcast of QL-based Rr-MAC,
QL-based 0.9Rr+0.1Rd-MAC, and QL-based 0.5Rr+0.5Rd-
MAC compared to that of QL-based Rcce-MAC are 37.9%,
34.0%, and 26.5%, respectively, whereas the greatest improve-
ments in system throughput for the first broadcast of QL-
based Rr-MAC, QL-based 0.9Rr+0.1Rd-MAC, and QL-based
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Fig. 5. Delay of emergency message broadcasts for QL-based µRr+νRd-MAC comparison with other MAC protocols for different number of vehicles in
VANET.

0.7Rr+0.3Rd-MAC compared to that of QL-based RcceRd-
MAC are 54.9%, 60.1%, and 48.2%, respectively.

The greatest improvements in throughput for the second
broadcast of QL-based Rr-MAC, QL-based 0.9Rr+0.1Rd-
MAC, and QL-based 0.5Rr+0.5Rd-MAC compared to that
of QL-based Rcce-MAC are 37.5%, 39.7%, and 16.7%, re-
spectively, whereas the greatest improvements in throughput
for the second broadcast of QL-based Rr-MAC, QL-based
0.9Rr+0.1Rd-MAC, and QL-based 0.5Rr+0.5Rd-MAC com-
pared to that of QL-based RcceRd-MAC are 93.2%, 107.6%,
and 59.7

The greatest improvements in throughput for the third
broadcast of QL-based Rr-MAC, QL-based 0.9Rr+0.1Rd-
MAC, and QL-based 0.5Rr+0.5Rd-MAC compared to that of
QL-based Rcce-MAC are 31.1%, 42.2%, and 19.3%, respec-
tively, whereas the greatest improvements in throughput for the
third broadcast of QL-based Rr-MAC, QL-based 0.9Rr+0.1Rd-
MAC, and QL-based 0.5Rr+0.5Rd-MAC compared to that
of QL-based RcceRd-MAC are 93.8%, 105.5%, and 59.8%,
respectively.

2) Delay measurement: In densely populated VANET en-
vironments, an increase in neighboring vehicles generally
reduces propagation delay. If vehicle density has already led
to congestion, emergency messages may queue in the message
queue, waiting for an available channel, causing delivery
delays even when vehicles are nearby. Therefore, as illustrated
in Fig. 5, the proposed QL-based 0.9Rr+0.1Rd-MAC method
in a three-lane environment with 50 nodes yields a delay range
of 31.396 – 56.311 seconds. When the node=200, the delay
ranges from 43.547 to 58.537 seconds.

Additionally, in Fig. 5, for a three-lane highway VANET,
such as a QL-based µRr+νRd-MAC or other MAC protocols,
the transmission delay is expected to increase as the number
of vehicle nodes increases. The transmission delay of the QL-
based µRr+νRd-MAC is expected to be lower than that of the
QL-based Rcce-MAC. Nevertheless, QL-based RcceRd-MAC
considers the transmission delay caused by communication

protocols. Regardless of the variations in the number of nodes,
the delivery delay remains consistently minimal.

TABLE IV
AVERAGE DELAY OF SUCCESSFUL EMERGENCY MESSAGE BROADCASTS

FOR QL-BASED µRR+νRD-MAC COMPARISON WITH QL-BASED
RCCE-MAC IN 100-VEHICLE VANET.

100− vehicle First Second Third
Rr-MAC vs. Rcce-MAC 21.5 % 52.3 % 53.6 %

0.9Rr+0.1Rd-MAC vs. Rcce-MAC 26.7 % 56.5 % 62.8 %
0.5Rr+0.5Rd-MAC vs. Rcce-MAC 62.3 % 75.9 % 83.7 %

As shown in Table IV, the greatest improvements in the
delay for the first broadcast of QL-based Rr-MAC, QL-
based 0.9Rr+0.1Rd-MAC, and QL-based 0.5Rr+0.5Rd-MAC
compared to that of QL-based Rcce-MAC in a 100-vehicle
VANET are 21.5%, 26.7%, and 62.3%, respectively. The
greatest improvements in the delay for the second broadcast
of QL-based Rr-MAC, QL-based 0.9Rr+0.1Rd-MAC, and
QL-based 0.5Rr+0.5Rd-MAC compared to that of QL-based
Rcce-MAC in a 100-vehicle VANET are 52.3%, 56.5%, and
75.9%, respectively. Finally, the greatest improvements in the
delay for the third broadcast of QL-based Rr-MAC, QL-
based 0.9Rr+0.1Rd-MAC, and QL-based 0.5Rr+0.5Rd-MAC
compared to that of QL-based Rcce-MAC in a 100-vehicle
VANET are 53.6%, 62.8%, and 83.7%, respectively.

As shown in Table IV, the delays for the first, second,
and third broadcasts of QL-based µRr+νRd-MAC are higher
than those for QL-based RcceRd-MAC. However, QL-based
µRr+νRd-MAC will have lower delays than QL-based Rcce-
MAC at any value of ν. QL-based µRr+νRd-MAC at higher
ν will have low delays similar to those for QL-based RcceRd-
MAC.

C. Sensitivity analysis on the space distribution of vehicles

In VANETs, the impact of vehicle density on throughput
is influenced by the surrounding environment’s topology. In
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Fig. 6. System throughput of emergency message broadcasts for QL-based µRr+νRd-MAC in a 200x200 (m2) square area region with 50- and 10-vehicles
VANET.

three-lane straight highways, topological changes are generally
less pronounced than in square areas. Emergency message
broadcasts in three lanes typically follow fixed directions. In a
vehicle environment, throughput is expected to be higher when
vehicles travel in the same direction compared to a square area.
This reduces the likelihood of head-on collisions, enabling
more effective broadcast of emergency messages.

In square areas, emergency message broadcasts may exhibit
greater diffusion and lower directionality than on highways.
Vehicles move in various directions, resulting in intricate
traffic patterns. The presence of multidirectional traffic may
lead to a decrease in the throughput of emergency message
broadcasts compared to highways, as vehicles are required
to take detours more frequently. Such a scenario can lead
to delays in broadcasting emergency messages and decrease
throughput as vehicles are forced to wait before proceeding.

1) Throughput measurement: In the proposed QL-based
0.9Rr+0.1Rd-MAC method, Fig. 6 shows that in a tree-lane
environment with 50 nodes, the throughput ranges from 0.639
to 0.785 Mbps. The throughput in a square area with 50 nodes
ranges from 0.299 to 0.344 Mbps, while in an area with 10
nodes, it varies from 0.486 to 0.550 Mbps.

Additionally, in Fig. 6, when considering QL-based
µRr+νRd-MAC or other MAC protocols, it is observed that
the three-lane highway outperforms the square area in a 50-
node VANET scenario, resulting in a higher system throughput
for emergency message broadcasts. In a square area with 50
nodes moving at high speeds, significant changes occur in
the network topology. Competition for channels leads to an
increase in collisions during emergency message broadcasts,
thereby intensifying and reducing system throughput. In the
square area, the system throughput is higher with ten vehicle
nodes than with 50 nodes because congestion and collisions
are reduced. This observation indicates that when the number
of vehicle nodes reaches 50, the capacity of the square area
is surpassed, resulting in collisions that significantly diminish
the system throughput.

2) Delay measurement: In the proposed QL-based
0.9Rr+0.1Rd-MAC method, depicted in Fig. 7, the delay
range in a tree-lane environment with 50 nodes is 31.396 –
56.311 seconds. In a square area with 50 nodes, the delay
ranges from 53.026 to 62.646 seconds, and in a square area
with 10 nodes, it ranges from 30.384 to 68.052 seconds.

Additionally, in Fig. 7, whether considering QL-based
µRr+νRd-MAC or other MAC protocols, it is observed that
in a 50-node VANET scenario, the three-lane highway out-
performs the square area in terms of emergency message
broadcasts, resulting in lower delivery delays. In a square area
with 50 nodes moving at high speeds, which results in frequent
changes in the network topology, channel contention exac-
erbates collisions in emergency message broadcasts, thereby
amplifying delivery delays. In a square area with 10 vehicle
nodes, the transmission delay caused by the reduced conges-
tion and collisions is lower than when there are 50 nodes.
Within the square area, 50 nodes surpassed the saturation
threshold of the system.

For QL-based µRr+νRd-MAC, the delay reward is con-
sidered to be the same as that for QL-based RcceRd-MAC,
and the reliability and delay metrics are considered simulta-
neously. Therefore, the proposed QL-based µRr+νRd-MAC,
when applied in VANETs, has a higher system throughput than
QL-based Rcce-MAC and QL-based RcceRd-MAC, when the
reliability reward is considered with suitable weightings. In
addition, improvements in the delay for QL-based µRr+νRd-
MAC also imply good performance with a higher ν value.

V. CONCLUSION

In this paper, we proposed a QL-based µRr+νRd-MAC for
multi-hop VANETs. To mitigate collision probability in emer-
gency message broadcasts, an optimal CW based on RL is
proposed to separate the broadcasting time in the contention
region. To achieve high reliability and low delay for emergency
message broadcasts for performance optimization, the weight-
ing parameters of reliability reward and delay reward were
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Fig. 7. Delay of emergency message broadcasts for QL-based µRr+νRd-MAC in a 200x200 (m2) square area region with 50- and 10-vehicles VANET.

developed. The system throughput increases as µ is increased,
and the backoff decreases as ν is increased. The simulation
results show that the proposed QL-based µRr+νRd-MAC-
MAC for VANETs has a higher system throughput and lower
delay than other protocols under varying vehicle densities and
spatial distributions. Future development of the proposed QL-
based µRr+νRd-MAC protocol in VANETs aims to improve
vehicle communication efficiency and system performance.
In addition, the security of smart transportation information
transmission can be enhanced by incorporating security mech-
anisms to reduce the risk of attacks and interference. In the
future, this technology can be applied to various areas, such as
traffic optimization, environmental protection, water resource
management, smart grids, and medical care in smart cities.
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