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Abstract
In the present study, a field experiment was conducted to investigate arsenic (As) concentrations in soils and in grains of 
15 rice varieties in a contaminated site in Taiwan. The studied site was divided into two experimental units, namely plot 
A and plot B. The results showed that mean total As concentrations were 70.94 and 61.80 mg kg−1 in plot A and plot B, 
respectively, and thus greater than or approximate to the soil quality standard for total As in Taiwan (60 mg kg−1). The As 
levels in rhizosphere soil in plot A (19.71–32.33 mg kg−1) were much higher than in plot B (6.41–8.60 mg kg−1); however, 
As accumulation in brown rice did not significantly differ between the plots. These results implied that a significant vari-
ation in the bioconcentration factor (BCF) value of As existed among different rice genotypes, and a negative correlation 
was observed between BCF value and rhizosphere As level in the soil. In phytotoxicity, the median values of the ecological 
risk indicator were 104.85 and 103.89 in plot A and plot B, respectively, indicating considerable risk. In human health risk 
assessment, the median and 97.5%-tile values for cancer risk for both male and female residents were markedly higher than 
the acceptable risk (1 × 10−4). Furthermore, non-cancer and cancer risks were higher for males than females, mainly due 
to the greater rice ingestion rate of males. Sensitivity analysis showed that total As concentration in soil was the main fac-
tor affecting health risks, suggesting that priority should be given to the reduction of soil As levels. To better manage the 
phytotoxicity of As on rice, as well as the health risk to residents resulting from exposure to As-contaminated soils, the soil 
quality standard for As in farmland soils should be set between 5 and 10 mg kg−1. The methodology developed in this study 
could also be applied to provide the basis for refining and revising the soil quality standard for heavy metals in farmland in 
other regions and countries.
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Introduction

As is ubiquitous in the ecosystem through natural routes, 
such as weathering of minerals and denudation of bedrock, 
or through anthropogenic activities such as mining, metal 

processing and smelting, chemical production, burned veg-
etation, and transport emission (Duan et al. 2017; Alexakis 
2020; Sarwar et al. 2021; Zhang et al. 2021; Painecur et al. 
2022). At a world level, it is reported that the background 
level of total As in crust and soil is 1.8 and 5–6 mg kg−1, 
respectively; however, the As level in the soil is highly 
correlated with the land use (Liu et al. 2004; Alexakis and 
Gamvroula 2014). For instance, Alexakis et al. (2021) inves-
tigated the spatial distribution of As content in the soil of 
the Ioannina basin and reported that the maximum As level 
in soil is 76, 27, and 33 mg kg−1 for agricultural land use, 
urban land use, and wetlands, respectively. Additionally, 
long-term irrigation of As-contaminated groundwater has 
increased As levels in many agricultural soil environments 
(Majumder and Banik 2019). For example, the groundwater 
As level could reach 2 mg L−1 in some areas of Bangladesh, 
where the WHO-permissible limit for drinking water is only 
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0.01 mg L−1. As a consequence, the As levels in soils could 
reach up to 83 mg kg−1 in areas irrigated with contaminated 
water in Bangladesh (Abedin et al. 2002).

Owing to its persistence, high bioaccumulation, and tox-
icity in farmland ecosystems, As pollution has become a 
serious problem worldwide. When excess As enters agricul-
tural soil, it may cause a decrease in soil productivity and 
threaten human health. Arsenic exposure can induce various 
cardiovascular, neurological, respiratory, and other systemic 
diseases (Juang et al. 2021; Sarwar et al. 2021). Among dif-
ferent As species, inorganic arsenic (iAs) has been classified 
as a class A human carcinogen that can cause lung, skin, 
liver, bladder, and kidney cancers (Duan et al. 2017; Sarwar 
et al. 2021). Consequently, the phytotoxicity as well as the 
human health risk of As in farmland ecosystems has become 
a major global concern and has been extensively studied in 
the past few decades (Juhasz et al. 2006; Lorenzana et al. 
2009; Rasheed et al. 2016; Bradham et al. 2018; Barcelos 
et al. 2020).

By definition, ecological risk assessment is the process 
of evaluating how likely it is that the environment might 
be impacted as a result of exposure to one or more envi-
ronmental stressors (US EPA 1992). In recent years, practi-
cal indexes such as the geoaccumulation index (Igeo), single 
factor pollution index (NCPI), and ecological risk index 
(Er) have been recommended for quantitative evaluation of 
the toxic risk of heavy metal in an environmental medium 
(Huang et al. 2019; Xiao et al. 2019; Prabagar et al. 2021; 
Lü et al. 2022). Among these indexes, the ecological risk 
index has been adopted by numerous researchers because it 
is easier to compute and takes both actual and background 
levels of metal into consideration. For instance, Praba-
gar et al. (2021) studied the levels of seven heavy metals 
in grapevine soils and applied the ecological risk index to 
assess the impact of these metals on the studied soils. How-
ever, few studies have attempted to incorporate the ecologi-
cal risk index into phytotoxicity and health risk assessment 
to comprehensively understand the influence of the studied 
metals on both the ecosystem and human health (Xiao et al. 
2019; Zhang et al. 2021).

Rice (Oryza sativa L.) is a staple food for more than 3 
billion people worldwide. The consumption of rice and rice 
products has been recognized as the primary source of As 
exposure, especially the more deleterious iAs form (Chi 
et al. 2018; Samal et al. 2021). The migration and accu-
mulation of As in rice might be influenced by two domi-
nant factors, namely rice genotype and the physicochemical 
properties of soil (Juang et al. 2021). Numerous studies have 
proposed that significant differences in As accumulation in 
grains exist for different rice genotypes, even those culti-
vated in the same rice paddy field (Carey et al. 2010; Chen 
et al. 2016; Juang et al. 2021). Ma et al. (2008) further indi-
cated that the As level in grain may exceed the regulatory 

standard for some genotypes of rice cultivated in paddy 
soils containing background or low As concentration. On 
the other hand, physicochemical properties including soil 
texture, pH, organic matter, and cation exchange capacity 
may affect the fractionation of As in soil, thus influencing 
the bioavailability and accumulation of As in rice grain 
(Pérez-Sirvent et al. 2007). When assessing the transport 
and accumulation of As in the soil–rice system, therefore, it 
is necessary to take bioavailability into consideration.

Traditionally, total As concentrations in grains have been 
used to estimate the daily intake associated with rice con-
sumption; however, this may result in the overestimation 
of exposure dose due to a lack of consideration of As bio-
accessibility (Li et al. 2017; Liu et al. 2017; Sharafi et al. 
2019). Bioaccessibility is defined as the fraction that can 
be transformed into absorbable forms during digestion (Liu 
et al. 2017; Guo et al. 2022). Compared with total concen-
tration, bioaccessible As concentration is more suitable and 
realistic for assessing actual human health risks associated 
with rice consumption (Sharafi et al. 2019; Wang et al. 2021; 
Guo et al. 2022). Recently, many researchers have studied 
the bioaccessibility of As to better understand As accumu-
lation and toxicity in the rice–human system. For exam-
ple, Omar et al. (2015) investigated the bioaccessibility of 
nine heavy metals and indicated that nonessential elements 
such as As may have lower bioaccessibility than essential 
microelements. Li et al. (2017) studied 55 rice samples col-
lected from a large geographic distribution across China and 
suggested that a suitable default value of 39.9% might be 
adopted for bioaccessible rice iAs. Li et al. (2021) further 
suggested that As bioaccessibility is highly variable among 
rice genotypes. For As species, As (III) is proposed to be the 
dominant bioaccessible species, followed by As (V), DMA, 
and MMA (Wang et al. 2021). To accurately determine the 
health risk of rice consumption, therefore, the inclusion of 
bioaccessibility in the human health risk assessment para-
digm is critical.

Despite the fact that As is harmful to ecosystems and 
human beings, most research and regulatory standards 
regarding the risk of As in paddy soils have focused solely 
on phytotoxicity or human health risk. Moreover, most pre-
vious studies have employed total As concentration to esti-
mate the potential health risk posed by As in the rice grain. 
As mentioned, lack of consideration of As bioavailability 
and bioaccessibility may reduce the accuracy of human 
health risk assessment. In light of these considerations, 
a field experiment was conducted in the present study to 
investigate As levels in the soil and the corresponding rice 
grain in a rice paddy field in Taiwan. The objectives of the 
study were (1) to understand the influence of biogeochemical 
character on the bioconcentration of As in the paddy soil, 
(2) to evaluate the phytotoxicity of As on rice based on the 
ecological risk index, (3) to assess the comprehensive health 
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risk posed by As in the studied soil by taking both biocon-
centration and bioaccessibility into consideration, and (4) 
to examine the current soil quality standard for As through 
a retrospective health risk assessment.

Materials and methods

Field experiment and sampling

A field experiment was conducted on a rice paddy farm 
located in central Taiwan from August to December 2020 
(Fig. 1). Based on the results of our preliminary investiga-
tion, the soil texture on the studied farm was classified as 
sandy loam. The pH, electrical conductivity, and organic 
matter (OM) of the soil were 7.17, 0.41 dS m−1, and 3.05%, 
respectively (Juang et al. 2021). According to their distance 
from the irrigation well, the site was divided into two experi-
mental units: one was the “plot A” unit, which was closer 
to the irrigation well, and the other was the “plot B” unit, 
which was located a distance from the irrigation well. The 
cultivars were arranged in these two plots in a strip-plot 
design proposed by Milliken et al. (1998). Each plot was 
further divided into 15 blocks; each block contained three 
planting lines for the cultivation of rice. Fifteen rice culti-
vars popular among local residents were selected for the 
experiment: TK2, TK9, TK14, TK16, TY3, TNG71, TC192, 
TN11, KH139, TT30, TCS10, TKW3, TCSW2, TCS17, and 
KHS7. During the experimental period, the irrigation fre-
quency was twice a week and was adjusted according to 
rainfall. For fertilizer management, the soils were supple-
mented with 150 kg N ha−1 as (NH4)2SO4, 40 kg P2O5 ha−1 

as KH2PO4, and 90 kg K2O ha−1 as K2SO4. At the end of the 
field experiment (December 2020), three plants for each cul-
tivar were randomly selected and harvested from each plot, 
and the corresponding rhizosphere soils were also collected. 
Two sets of parallel experiments were conducted; thus, each 
cultivar had six replicates.

Sample processing and chemical analysis

All the collected samples were transported to a laboratory 
in sealed polyethylene bags. Grain samples were thoroughly 
washed with distilled water, oven-dried at 75 °C, and then 
unhusked to obtain brown rice samples. Meanwhile, the soil 
samples were air-dried at room temperature and then ground 
to pass through a 2-mm sieve. The brown rice and soil sam-
ples were then kept in polyethylene bags until analysis.

To determine the total, rhizosphere, and exchangeable 
As, soil samples were extracted with HNO3–H2O2 mix-
ture, DCB (dithionite-citrate-bicarbonate) solution, and 
NaH2PO4, respectively. The rhizosphere As was generally 
regarded as the fraction of total As that can be potentially 
absorbed by the rice root surface (Wang et al. 2018). On the 
other hand, the exchangeable As was regarded as the frac-
tion of total As that can be fast absorbed by plants (Alarm 
and Tokunaga 2006). Brown rice samples were ground and 
then digested completely with 0.28 M HNO3 at 95 °C for 
90 min (Yao et al. 2021). The As concentration in digests 
and extracts for soil samples was then determined with an 
inductively coupled plasma-mass spectrometer (ICP-OES, 
Agilent 7700 ×) (Juang et al. 2021). The extraction method 
for determining As species in plant samples was modified 
by Ma et al. (2017). The As species, including As (III), As 

Fig. 1   Location map, soil 
sampling configuration, and 
spatial distributions of the 
total, DCB-extracted, and 
NaH2PO4-extracted As concen-
tration in soils of the studied 
site
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(V), DMA, and MMA, in each extract, were determined by 
using HPLC-ICP-MS with the equipment parameters pro-
posed by Liao et al. (2021). Meanwhile, Certified Reference 
Material (CRM) ERM BC-211 was analyzed together with 
rice samples.

Rhizosphere As fraction

Rhizosphere As fraction (frhizo, %) was calculated as follows:

where Csoil (mg kg−1) is the total As concentration in the 
soil; Csoil,rhizo (mg kg−1) is the As concentration in the rhizo-
sphere soil.

Bioconcentration factor

Bioconcentration factor (BCF) is defined as the ability of 
paddy rice to absorb and retain As from rhizosphere soil and 
can be calculated as follows:

where Crice (mg kg−1) is the As concentration in brown rice.

Phytotoxicity of As on rice

To evaluate the phytotoxicity of As on rice, the ecological 
risk index (Er) proposed by Hakanson (1980) was applied. 
It can be calculated as

where Csoil is the measured total As concentration in soil 
samples (mg kg−1), Cb represents the background value of 
total As in soil, and T is the toxic factor of As. Chang et al. 
(1999) investigated As content in surface soils (0–15 cm) 
in Taiwan and proposed that the mean As concentration in 
agricultural soils is 5.65 mg kg−1. In addition, the T value 
for As is 10, according to Hakanson (1980). The ecologi-
cal risk index, Er, is classified into five categories: low risk 
(Er < 40), moderate risk (40 ≤ Er < 80), considerable risk 
(80 ≤ Er < 160), high risk (160 ≤ Er ≤ 320), and very high risk 
(Er > 320) (Huang et al. 2019; Xiao et al. 2019; Prabagar 
et al. 2021; Zhang et al. 2021).

Human health risk assessment

The human health risks of iAs associated with rice con-
sumption by Taiwan residents were determined following 

(1)frhizo =
Csoil,rhizo

Csoil

(2)BCF =
Crice

Csoil,rhizo

(3)Er =
Csoil

Cb

× T

the guidance proposed by the US EPA (US EPA 1992; 
2002) with modifications. In the exposure assessment, the 
estimated daily intake (EDI, mg kg−1 d−1) of iAs in rice was 
calculated as follows:

where IR is the ingestion rate of brown rice (g d−1). Pinorg 
represents the iAs proportion of total As in brown rice; 
Pwhite/brown represents the proportion of iAs in white rice 
relative to that in brown rice. BAc is the ratio of iAs that 
can be absorbed into the systemic circulation following con-
sumption of iAs in white rice (i.e., bioaccessibility). CF is 
the conversion factor (kg g−1), and BW is the body weight 
of the considered population (kg).

Due to the high variability and uncertainty of the studied 
population, some parameters in Eq. (4) were treated proba-
bilistically. Considering the restrictions on the domain of 
the variables, some parameters, including Csoil, BCF, and 
IR, were transformed from normal distribution to lognor-
mal distribution to avoid errors (i.e., negative values) in the 
simulation. Since IR and BW in Eq. (4) are quite different 
according to sex, the health risk of female and male popula-
tions was estimated separately. As a consequence, the dis-
tribution of EDI was obtained from the simulation result of 
Eq. (4). Then, the median and 97.5%-tile value of EDI was 
used to express central tendency exposure (CTE) and the 
plausible worst-case reasonable maximum exposure (RME), 
respectively.

In risk characterization, both carcinogenic and noncar-
cinogenic risks were considered. For noncarcinogenic risk, 
the hazard quotient (HQ), representing the ratio of EDI to 
the reference dose (RfD, mg kg−1 d−1) of iAs, was calculated 
as follows:

The inherent assumption of HQ is that there is a threshold 
of exposure below which it is unlikely that the considered 
population will experience adverse health effects. If the HQ 
exceeds unity, potential noncarcinogenic effects might be a 
concern (Juang et al. 2021).

For carcinogenic risk, the target cancer risk (TR), repre-
senting the probability of an individual developing cancer 
over a lifetime as a result of exposure to a potential carcino-
gen, was calculated as follows:

where SF is the slope factor of iAs (kg d mg−1). If TR < 10−6, 
the carcinogenic risk is considered negligible; if TR > 10−4, 
the risk is considered unacceptable by most international 
regulatory agencies. According to the US EPA’s guidance, 

(4)
EDI =

Csoil × frhizo × BCF × IR × Pinorg × Pwhite∕brown × BAc × CF

BW

(5)HQ =
EDI

RfD

(6)TR = EDI × SF
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the carcinogenic risk is considered acceptable or tolerable 
if 10−6 < TR < 10−4 (Sharafi et al. 2019).

Statistical and uncertainty analysis

All experimental data were analyzed using Microsoft Excel 
2013 and represented as the mean or mean with standard 
deviations for several samples of soils or each genotype 
of rice. Statistica software (Ver. 13.3, TIBCO Software 
Inc.) was employed to generate box-whisker plots. In 
addition, Monte-Carlo simulation with 10,000 iterations 
was performed using Oracle Crystal Ball software (Ver. 
11.1.2.4.850, Oracle®) to estimate Er, EDI, HQ, and TR 
considering the distribution of independent variables (Csoil, 
frhizo, BCF, IR, BAc, and BW) in Eqs. (3) and (4).

Results and discussion

As accumulation in soils and rice grains

The total As concentrations in plot A and plot B were 
70.94 ± 39.17 (mean ± standard deviation, n = 19) and 
61.80 ± 18.72 mg  kg−1, respectively, which was greater 
than or near the soil quality standard for total As in farm-
land soil used for food crop production in Taiwan (i.e., 
60 mg  kg−1) (EPA-TW 2011). A larger variation of As 
concentration was found in plot A than in plot B (Fig. 1). 
In addition, the As levels accumulated in rhizosphere soil 
in plot A (19.71–32.33 mg kg−1) was much higher than in 
plot B (6.41–8.60 mg kg−1) (Table 1), which was likely 
because the sampling sites in plot A were much closer to 

the irrigation well than those in plot B. Interestingly, As 
accumulation in rice grains did not significantly differ 
between the two plots. The total As concentrations in grains 
ranged from 0.19 to 0.47 mg kg−1 for plot A and from 0.22 
to 0.45 mg kg−1 for plot B, which were higher than the local 
(0.117–0.216 mg kg−1) and global (0.08–0.2 mg kg−1) nor-
mal range reported by previous studies (Chen et al. 2016; 
Majumder and Banik 2019). On the other hand, since BCF 
was defined as the ratio of As level in rice grain to that in 
soil, BCF in plot A (0.0076–0.0172) was relatively lower 
than that in plot B (0.0253–0.0590) (Table 1 and Fig. 2).

By comparing the total concentration with the rhizos-
phere concentration of metals, it is generally recognized 
that the latter is a better indicator to relate metal accumula-
tion in plants and available metal content in soils (Liu et al. 

Table 1   As concentration in 
rhizosphere soils, total As 
concentration in grains, and 
bioconcentration factor (BCF) 
of different rice genotypes 
cultivated in plot A and plot B

Cultivar Plot A Plot B

Rhizosphere As 
(mg kg−1)

Total As in grain 
(mg kg−1)

BCF Rhizosphere As 
(mg kg−1)

Total As in grain 
(mg kg−1)

BCF

TK2 31.13 0.30 0.0096 7.46 0.43 0.0572
TK9 32.33 0.25 0.0076 6.44 0.36 0.0554
TK14 30.64 0.27 0.0088 6.41 0.37 0.0577
TK16 22.85 0.32 0.0142 6.58 0.32 0.0483
TY3 22.90 0.28 0.0124 8.05 0.42 0.0518
TNG71 28.89 0.47 0.0162 7.13 0.42 0.0590
TC192 25.31 0.27 0.0107 7.17 0.33 0.0460
TN11 25.36 0.34 0.0133 7.54 0.33 0.0441
KH139 21.10 0.31 0.0146 7.84 0.43 0.0552
TT30 23.23 0.29 0.0127 8.60 0.22 0.0253
TCS10 21.03 0.24 0.0113 7.81 0.31 0.0398
TKW3 22.96 0.28 0.0122 8.04 0.45 0.0559
TCSW2 21.29 0.37 0.0172 7.47 0.43 0.0575
TCS17 19.71 0.24 0.0123 7.61 0.29 0.0384
KHS7 22.23 0.19 0.0087 7.74 0.40 0.0515

0.00
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0.02

0.03

0.04

0.05
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0.07

0 10 20 30 40

BC
F

As concentration in rhizosphere soils (mg kg−1)

Plot A

Plot B

Fig. 2   Relationships between bioconcentration factor (BCF) and As 
concentration in rhizosphere soils at the studied sites
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2017; Xiao et al. 2019). In the present study, however, dis-
similar results were observed between the As concentration 
in rice grain and the corresponding content in rhizosphere 
soils. The bioavailability of As is influenced by many soil 
properties, such as pH, cation exchange capacity (CEC), 
and OM (Gao et al. 2021). In this study, a relatively higher 
rhizosphere As fraction in plot A may be due to a long-term 
reduction in paddy soil condition caused by higher soil water 
content, thus favoring As (V) transformation to mobile As 
(III). On the other hand, an increase in soil water content 
enhances the formation of Fe-plaque in plant roots due to the 
dissolution of iron oxides in rhizosphere soils. The forma-
tion of Fe-plaque is generally regarded as a buffer that can 
restrict As entry into roots (Liu et al. 2004; Juang et al. 2021; 
Khanam et al. 2022). More As will be absorbed by Fe-plaque 
and reduce mobility to roots when the soil water content 
is high, overriding the effect of its increased availability. 
Therefore, the proportion of As that is actually absorbed by 
roots is lower in plot A than in plot B.

It is generally recognized that most of the As absorbed by 
rice plants remained in the root (Juang et al. 2021). Follow-
ing the entry into the root, the translocation of As from root 
to grain is controlled by the abundance of nodes in shoots, 
As transporters and its chelating substances, and genes 
associated with As transport and binding (Gao et al. 2021; 
Khanam et al. 2022). Consequently, As transport to and 
accumulation of brown rice will vary among rice cultivars. 
In the present results (Table 1 and Fig. 2), all BCF values 
were less than 0.1, revealing that the uptake and translo-
cation of As from soil to grains are limited. Additionally, 
BCF values varied dramatically among cultivars at relatively 
lower accumulated-As levels in the soil in plot B. With 
regard to genotypic difference, it is generally recognized that 
Japonica cultivars have lower As accumulation and translo-
cation rates from straw to grain than Indica cultivars (Mridha 
et al. 2022). In the present results, however, the three high-
est BCF values were found for Japonica cultivars (TNG71, 
TK14, and TK2), whereas the lowest BCF values were found 
for Indica cultivars (TCS17 and TCS10), with the exception 
of TD30. Syu et al. (2014) indicated that the translocation 
factor from root to shoot of Japonica cultivars is significantly 
higher than that of Indica cultivars. The higher BCF value 
for Japonica cultivars observed in this study may thus be 
attributed to the higher translocation rate of As from root to 
shoot, with its ultimate accumulation in grains. On the other 
hand, BCF values were fairly low and remained nearly sta-
ble, with a relatively higher accumulated-As level in plot A. 
These results imply that, at low accumulated-As levels in the 
soil (i.e., plot B), a large proportion of As could be absorbed 
by roots, and then transported to grains because the biotic 
ligands (e.g., nodes in shoots and As chelating substances) 
within rice plants remained unsaturated. Consequently, the 
translocation of As from roots to grains was dominated by 

the rice genotype. Furthermore, in comparison to Indica cul-
tivars, Japonica cultivars were more prone to accumulating 
As in grains by bioconcentration. At a high accumulated-As 
level (i.e., plot A), however, the absorption and translocation 
of As will be constrained because the biotic ligands within 
rice plants were nearly occupied and saturated. It can thus be 
speculated that different adaptation strategies were adopted 
by the rice when exposed to different ranges of available 
As in soil.

Among the different As species, the dominant one 
in brown rice was As (III), followed by DMA. The level 
of As (V) was relatively low, whereas MMA was nearly 
undetectable in the present study (Table 2). The levels 
of iAs in different rice cultivars varied, being 0.15–0.25 
and 0.18–0.27 mg kg−1 in plot A and plot B, respectively. 
According to the maximum allowable level of iAs in brown 
rice set by the local government (i.e., 0.2 mg kg−1), approxi-
mately 60% of rice cultivars (9 of 15) in plot A and 87% 
of rice cultivars (13 of 15) in plot B exceeded the regula-
tory standard. No significant difference was observed for 
the mean proportion of iAs in total As in brown rice (Pinorg) 
between plot A and plot B. The mean percentage of Pinorg 
was 68.36%, which was similar to that reported in previ-
ous research (Sun et al. 2008; Juang et al. 2021). On the 
other hand, an obvious genotypic difference for Pinorg was 
observed. The Pinorg value ranged from 0.53 to 0.92 and from 
0.53 to 0.91 in plot A and plot B, respectively.

Levels of inorganic As in rice have received increasing 
attention, as iAs is highly toxic to human beings. Con-
sequently, some national legislative limits for As in rice 
have been set based on iAs, rather than total As, for the 
protection of human health (Juang et al. 2021). In paddy 
soils, As (III) is the predominant As species because of 
their long-term flooded (anaerobic) conditions (Syu et al. 
2014; Mridha et al. 2022). In rice grains, however, the pro-
portions of As species are variable and strongly dependent 
on the rice genotype and on physicochemical and envi-
ronmental interactions (Kumarathilaka et al. 2018). For 
instance, it was reported that inorganic As is predominant 
in Asian rice, whereas DMA is the most dominant spe-
cies in rice produced in Europe and the USA (Islam et al. 
2016; Mridha et al. 2022). A consistent result was also 
obtained in this study since all Pinorg values were greater 
than 0.5. The relatively higher value for Pinorg may also 
be attributed to the rice type analyzed in this study since 
brown rice generally contains a higher proportion of iAs 
as compared to polished rice (Majumder and Banik 2019). 
On the other hand, Wu et al. (2011) proposed that the pro-
portion of DMA increases with increasing soil As content. 
Moreover, Zavala et al. (2008) indicated that DMA is the 
major species with relatively higher As levels in rice. In 
the present results, however, the influence of As content 
in soils and rice on the proportions of iAs and DMA in 
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brown rice was negligible. This contradictory result may 
be due to various factors, such as the difference in experi-
mental conditions, soil environments, and rice genotypes. 
From the perspective of health risk, three rice genotypes, 
namely, TK16, TD30, and TCS17, are recommended in 
this study because they accumulated stable-low levels of 
iAs in grains in both plots.

Phytotoxicity assessment

To quantitatively express the ecological impact of As in 
the studied sites, Er values were calculated. The results are 
shown in Fig. 3. The median Er values in plot A and plot 
B were 104.85 and 103.89, respectively, indicating that in 
average situations, As in soil would pose a considerable risk 
to rice in both plots. More specifically, approximately 23.76 

Table 2   Arsenite (As (III)), 
arsenate (As (V), DMA), total 
As concentration, and the 
proportion of iAs of total As 
(Pinorg) in brown rice of different 
rice genotypes cultivated in plot 
A and plot B

Cultivar Plot A Plot B

As (III) DMA As (V) Total As Pinorg As (III) DMA As (V) Total As Pinorg

(mg kg−1) (mg kg−1)

TK2 0.17 0.11 0.01 0.30 0.60 0.21 0.20 0.02 0.43 0.53
TK9 0.20 0.02 0.03 0.25 0.92 0.23 0.10 0.03 0.36 0.72
TK14 0.18 0.07 0.02 0.27 0.74 0.22 0.14 0.01 0.37 0.62
TK16 0.19 0.12 0.01 0.32 0.63 0.19 0.13 0.00 0.32 0.59
TY3 0.20 0.08 0.01 0.28 0.75 0.21 0.19 0.02 0.42 0.55
TNG71 0.23 0.22 0.02 0.47 0.53 0.24 0.15 0.03 0.42 0.64
TC192 0.19 0.07 0.01 0.27 0.74 0.22 0.09 0.02 0.33 0.73
TN11 0.20 0.14 0.00 0.34 0.59 0.20 0.14 0.00 0.33 0.61
KH139 0.18 0.12 0.01 0.31 0.61 0.22 0.20 0.02 0.43 0.56
TT30 0.17 0.11 0.02 0.29 0.66 0.19 0.02 0.01 0.22 0.91
TCS10 0.17 0.07 0.01 0.24 0.75 0.21 0.08 0.02 0.31 0.74
TKW3 0.19 0.08 0.01 0.28 0.71 0.22 0.21 0.02 0.45 0.53
TCSW2 0.22 0.15 0.00 0.37 0.59 0.24 0.16 0.03 0.43 0.63
TCS17 0.14 0.10 0.01 0.24 0.63 0.17 0.11 0.01 0.29 0.62
KHS7 0.17 0.02 0.00 0.19 0.89 0.21 0.19 0.00 0.40 0.53

Fig. 3   Box-whisker plots of the 
ecological risk index (Er) of soil 
As levels in the studied sites. 
The red line of dashes was the 
upper limit of low risk (Er = 40), 
moderate risk (Er = 80), consid-
erable risk (Er = 160), and high 
risk (Er = 320), respectively
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and 8.31% of the studied soil exhibited high risk in plot A 
and plot B, respectively, with Er values ranging between 160 
and 320. Additionally, approximately 3.48% of the soil sam-
ples in plot A were categorized as very high risk (Er > 320) 
according to the ecological risk categories previously illus-
trated. The higher variability in Er value in plot A may be 
due mainly to the higher variability of soil As concentration 
in this plot.

Elevated As levels in farmland soils may affect normal 
growth and reduce the yield of crop plants, including rice. It 
was reported that increased levels of As can induce straight-
head disease, adversely affect photosynthesis, and negatively 
affect the growth parameters of rice (Kumarathilaka et al. 
2018). Rice is a major cereal crop, and As contamination 
in rice paddy fields is a growing problem (Mridha et al. 
2022). Generally, the background total As level in soil 
ranges from 5 to 6 mg kg−1; however, the repeated applica-
tion of As-containing pesticides and fertilizers has resulted 
in an increase in As accumulation level in farmland soils 
(Juang et al. 2021). For instance, it was reported that the 
total As level in agricultural soils in many countries, includ-
ing Taiwan, exceeded the permissible limit (20 mg kg−1) 
established by the US EPA (Azam et al. 2016; US EPA 
2002). In this study, the ecological risk index (Er), taking 
into consideration both the background level and biological 

toxicity of As, was adopted to evaluate the impact of As 
on the agricultural ecosystem. The mean As concentrations 
in both plots were higher than the background As level of 
local soils (i.e., 5.65 mg kg−1), thus indicating considerable 
ecological risk. Interestingly, the Er values were nearly the 
same for both plots, although the mean As concentration in 
plot A (70.94 mg kg−1) was relatively higher than that of 
plot B (61.80 mg kg−1). Furthermore, the Er values obtained 
from the deterministic approach were higher than those from 
the probabilistic approach. This inconsistent result might be 
due mainly to uncertainties associated with these two plots 
(Zhang et al. 2021). Most previous studies conducting a phy-
totoxicity assessment of heavy metals have been based on 
deterministic analysis, which provided only limited informa-
tion on heavy metal pollution and the underlying risk. There-
fore, the probabilistic phytotoxicity assessment proposed in 
this study provides more detailed pollution information for 
better soil pollution management and control.

Daily iAs accumulation and health risk assessment

The parameters and input values used for health risk cal-
culation are summarized in Table 3. The CTE of EDI in 
plot A was 9.5 × 10−5 and 7.1 × 10−5 mg kg−1 d−1 for local 
males and females, respectively, whereas the CTE of EDI 

Table 3   Parameters and input values used in assessing human health risk of iAs associated with rice consumption

Parameter Symbol Input value Unit Source

Total As concentration in soil Csoil mg kg−1 This study
    Plot A LN (49.07, 1.99)
    Plot B LN (49.37, 1.44)

Rhizosphere As fraction frhizo – This study
    Plot A N (0.349, 0.058)
    Plot B N (0.121, 0.010)

Bioconcentration factor BCF – This study
    Plot A LN (0.01183, 1.2509)
    Plot B LN (0.04867, 1.2076)

Ingestion rate IR g day−1 FDA (2022)
    Male LN (109.18, 1.82)
    Female LN (63.87, 1.87)

Proportion of iAs of total As in brown rice Pinorg 0.6836 − This study
Proportion of iAs of white rice to that in brown rice Pwhite/brown 0.65 − Sun et al. (2008);

Naito et al. (2015); 
Narukawa et al. 
(2011)

Bioaccessibility BAc Be (4.91, 1.85) − Zhou et al. (2021)
Conversion factor CF 10−3 kg g−1 −

Body weight BW kg MHW (2022)
    Male N (75.4, 21.6)
    Female N (58.7, 14.7)

Reference dose RfD 0.0003 mg kg−1 d−1 IRIS database
Slope factor SF 1.5 kg d mg−1 IRIS database
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in plot B was 1.4 × 10−4 and 1.0 × 10−4 mg kg−1 d−1 for 
local males and females (Fig. 4(A)). A large variation in 
EDI was observed for males compared to females; thus, the 
RME of EDI was found to be 7.4 × 10−4 mg kg−1 d−1 for 
males in both plots. According to the IRIS database pro-
vided by the US EPA, the RfD of iAs for noncarcinogenic 
effect is 3 × 10−4 mg kg−1 d−1. Therefore, HQ was calculated 
by Eq. (5) and is represented in Fig. 4(B). As can be seen, 
the median HQs for all exposure scenarios were below 0.5, 
indicating low noncarcinogenic risk in the average situation. 
However, all the 97.5%-tile HQs exceeded unity, implying 
potential noncarcinogenic risks from a conservative view-
point. As for the carcinogenic effect, the median TRs ranged 
from 1.1 × 10−4 (plot A, female) to 2.1 × 10−4 (plot B, male), 
whereas the 97.5%-tile TR ranged from 8.2 × 10−4 (plot A, 
female) to 1.1 × 10−3 (plot B, male) (Fig. 4(C)). Therefore, 
all the considered exposure scenarios would pose unaccep-
table carcinogenic risks to the target populations, whether 
from an average or a conservative perspective.

Dietary habit is an important factor in human health risk 
assessment. In most Asian countries, including Taiwan, 
white rice is the major subtype of rice consumed by inhab-
itants. A number of previous studies have reported that the 
proportion of iAs in rice husk and bran is higher than in 
endosperm (Wang et al. 2019; dos Santos et al. 2021). As a 
result, the iAs fraction in white (polished) rice is lower than 
in brown rice. International regulations thus set different 
acceptable limits for iAs in brown rice and white rice. For 
example, the European Food Safety Authority (EFSA) sets 
regulatory limits for the adult population at 0.20 mg kg−1 
for white rice and 0.25 mg kg−1 for brown rice (Islam et al. 
2016). In this study, the parameter Pwhite/brown was introduced 
in Eq. (4) to represent the proportion of iAs in white rice 
compared to that in brown rice. This parameter is signifi-
cantly influenced by the degree of polishing (DOP). Naito 
et al. (2015) indicated that inorganic As levels in white 
rice polished by removing 10% of the bran by weight was 
reduced to 51–70% of those in brown rice. Narukawa et al. 
(2011) analyzed rice samples collected from various regions 
in Japan and found that iAs levels in white rice declined to 
60% after a 10% DOP of brown rice. From a survey of rice 
samples obtained from Japan and the US, Sun et al. (2008) 
reported that iAs concentrations in white rice decreased 
to 43–83% after 7% DOP. By taking into consideration 
the DOP in Taiwan, therefore, an input value of 0.65 was 
adopted for Pwhite/brown in this study.

The ingestion rate of white rice (IR) is another critical 
factor in oral iAs exposure and varies widely from country 
to country. It was reported that the per capita consump-
tion of rice is highest at 400–650 g day−1 in Bangladesh, 
whereas rice consumption for a Brazilian adult is only 
55 g  day−1 (Islam et al. 2017; dos Santos et al. 2021). 
Additionally, significant gender differences have been 

observed. For instance, Ohno et al. (2007) conducted a 
survey in Bangladesh and reported that the intake of As 
is higher for males than females due to the greater daily 
rice consumption of males (776 g day−1) compared with 
females (553 g day−1). More recently, Chen et al. (2016) 
indicated that the daily intake of iAs varies considerably in 
Taiwan, mainly due to differences in the consumption rate 
of rice between males and females. In the present results, 
the estimated daily intake of iAs (EDI), as well as the 
subsequent non-cancer (HQ) and cancer risk (TR), were 
all higher for males than for females, mainly because the 
ingestion rate of white rice of males is greater than that 
of females. These findings are consistent with those pub-
lished in previous studies (Ohno et al. 2007; Chen et al. 
2016).

Apart from As-contaminated drinking water, it is gener-
ally recognized that rice consumption is the major route of 
As exposure in many Asian countries (Islam et al. 2016; 
Mridha et al. 2022). A number of studies have thus focused 
on As accumulation in rice and the subsequent human health 
risk. Conventionally, the risk assessment for dietary expo-
sure to iAs is conducted based on the total iAs concentration 
in rice grain. However, Li et al. (2017) indicated that As 
intake based on total iAs in rice may overestimate As expo-
sure 2.0- to 3.7-fold compared to that based on bioaccessible 
iAs. Therefore, risk assessments of iAs exposure from rice 
consumption should take bioaccessible iAs concentration 
(BAc) into consideration. The BAc of iAs depends mainly 
on the rice genotype and the preparation and cooking condi-
tions of the rice (Yager et al. 2015). Recently, both in vivo 
animal models (e.g., swine or murine models) and in vitro 
digestion methods (e.g., physiologically based extraction test 
method, gastrointestinal method, unified BARGE method) 
have been developed for the determination of BAc (Laparra 
et al. 2005; Yager et al. 2015; Islam et al. 2017; Li et al. 
2017; 2021; Wang et al. 2021). Large variations in the bio-
accessibility of iAs in different rice genotypes have been 
reported in these studies. For example, Laparra et al. (2005) 
used a simulated gastrointestinal digestion method and 
found that the BAc of iAs in cooked rice ranged from 63 to 
99%; however, Du et al. (2019) used a similar approach and 
reported that the average BAc of As (III) was only 55.1%. 
Furthermore, Li et al. (2017) indicated that the BAc of iAs 
in rice varies widely even within a country. As a result, Zhou 
et al. (2021) employed a beta distribution with parameters of 
α = 4.91 and β = 1.85 to better characterize the uncertainty 
of BAc in rice. In this study, therefore, the distribution sug-
gested by Zhou et al. was directly adopted to consider the 
uncertainty and variability of BAc in various rice genotypes. 
The resulting distribution of BAc ranged from 0.43 to 0.95 
(5%-tile to 95%-tile), with a median of 0.75, which was 
comparable to the BAc values reported in previous studies 
(Laparra et al. 2005; Du et al. 2019).
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Fig. 4   Box-whisker plots of A 
estimated daily intake of iAs 
(EDI); B hazard quotient (HQ); 
C target cancer risk (TR) of 
residents (male and female) 
associated with consuming rice 
cultivated in the studied soils 
(plot A and plot B). The red line 
of dashes was the upper limit 
of acceptable noncarcinogenic 
risk (HQ = 1) and carcinogenic 
risk (TR = 10−1) in B and C, 
respectively
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To characterize the effect of input parameters in Eq. (4) 
on health risk, sensitivity analyses were performed using 
Crystal Ball software. According to the results, the factors 
affecting health risk in plot A in decreasing order were as 
follows: Csoil > IR > BW > BCF ≈ BAc > frhizo, whereas the 
factors affecting health risk in plot B in decreasing order 
were IR > Csoil > BW > BAc > BCF > frhizo (Fig. 5). By defini-
tion, the sensitivity of a parameter represents how changing 
a unit in the value of the parameter changes the final result 
(Zhang et al. 2021). The inconsistency of the rank of the 
first two main factors (i.e., Csoil and IR) in the two plots may 
be due to the high variation of Csoil in plot A. Theoretically, 
based on the sensitivity analysis results, it will be most effi-
cient to minimize the risk of local residents exposed to iAs 
via rice consumption by reducing the total As in soil or by 
reducing the ingestion rate of white rice. In reality, however, 
a reduction in rice ingestion is not an option in many parts 
of the world where rice is an irreplaceable part of the diet 
(Zhuang et al. 2016). Consequently, more effort should be 
put into the reduction of As levels in the soil. It has been 
confirmed that the main source of soil As is As-contami-
nated irrigation water (Majumder and Banik 2019). From 
the perspective of source control, therefore, priority should 

be given to the reduction of As concentrations in irrigation 
water. Recent studies have recommended that an electroco-
agulation process be utilized for the removal or treatment 
of As in water (Sandoval et al. 2021). On the other hand, 
body weight (BW) is also a sensitive parameter. The body 
weight of males is higher than that of females. However, 
the effect of the higher ingestion rate of rice by males in the 
present study overwhelmed that of the greater body weight, 
so a larger EDI was found for males. For reducing BCF, 
the application of silicate materials in farming practice, as 
well as gene modification of rice cultivars have been proven 
to be promising and effective techniques to reduce As in 
rice grains (Juang et al. 2021). Although rhizosphere As 
fraction (frhizo) seems to be less sensitive, some researchers 
have suggested that the application of sulfur fertilizers and 
silicate materials can decrease the accumulation of As in 
rhizosphere or the mobility of soil As and thus reduce the 
health risk associated with rice consumption (Juang et al. 
2021; Lü et al. 2022).

In order to examine the current soil quality standard for 
As, normal distributions with different mean values (i.e., 
2.5, 5, 10, 15, 30, and 60 mg kg−1) were considered vari-
ous exposure scenarios and were employed to characterize 
Csoil in Eq. (4). The standard deviation was assumed to be 
10% of its mean value. Then, the assumed distributions of 
Csoil, with all other parameters and input values in Table 3, 
were introduced into Eq. (4) to calculate the correspond-
ing Er, HQ, and TR. From a conservative perspective, 
the phytotoxicity of As in plot B, as well as the human 
health risk of males associated with the consumption of 
rice from plot B, were regarded as the worst exposure sce-
nario and used for risk estimation. The simulation results 
are summarized in Table 4. At present, the soil quality 
standard for total As level in farmland soil is 60 mg kg−1 
in Taiwan (EPA-TW 2011). According to Table 4, this 
standard will result in a “considerable” phytotoxicity and 
an “unacceptable” carcinogenic health risk even based on 
the CTE condition. In fact, the quality standard for As 
in farmland soil in Taiwan is higher than that in many 
other countries, such as Canada (12 mg kg−1), the USA 
(20 mg kg−1), and China (30 mg kg−1) (Azam et al. 2016; 
Alexakis et al. 2021; Gao et al. 2021). On the other hand, 
when the mean value of Csoil is lower than 15 mg kg−1, 
the phytotoxicity will become “low,” and the noncarci-
nogenic risk will be acceptable even in the worst (i.e., 
RME) situation; however, the 97.5%-tile value of TR is 
still higher than 1 × 10−4, indicating an unacceptable car-
cinogenic risk. The 97.5%-tile TR values were 1.8 × 10−4 
and 9.3 × 10−5 when the mean Csoil values were decreased 
to 10 and 5 mg kg−1, respectively. From the viewpoint of 
phytotoxicity and health risk assessment, therefore, the 
soil quality standard for As for two population groups con-
suming rice from different sampling sites is advised to fall 
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within 5–10 mg kg−1. However, other aspects, including 
risk communication, risk attitude, and risk management, 
should be also included by policymakers while setting the 
soil quality standard for As in farmlands.

In this study, limitations existed in the health risk assess-
ment of As in rice. First, the influence of the cooking method 
on bioaccessible As was not considered, which would over-
estimate the health risk. In fact, rice is not consumed directly 
without cooking by nearly all consumers. Second, As intake 
through rice consumption was only one exposure pathway 
for local residents, which would underestimate the health 
risk. Indeed, it is generally recognized that other dietary 
exposure routes, such as drinking water and seafood, would 
also contribute a certain amount of daily As intake and pose 
a considerable health risk to human beings. To overcome 
the limitations of this study, therefore, further research work 
should be dedicated both to the effects of cooking on bioac-
cessible As and to the diet structure of residents.

Conclusions

The results indicated that a significant variation in the BCF 
value of As existed among different rice genotypes, and a 
negative correlation was observed between BCF value and 
rhizosphere As level in the soil. Second, the soil As level in 
the studied plots would result in considerable phytotoxicity 
on rice. Third, based on a conservative perspective, local 
residents would be exposed to unacceptable carcinogenic 
and noncarcinogenic health risks associated with consuming 
rice grown in the studied sites. Sensitivity analysis results 
further implied that priority should be given to reducing 
As levels in soils as well as in irrigation waters. Lastly, it 
was recommended that, for the protection of farmland eco-
systems and human health, the current soil quality stand-
ard for As in farmlands should be decreased from 60 to 
5–10 mg kg−1. The methodology developed in this study 
could also be applied to provide the basis for refining and 
revising the soil quality standard for heavy metals in farm-
land in other regions and countries.
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