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Abstract—This paper proposes a novel sliding discrete Fourier 

transform (DFT) algorithm and its architecture design to 

efficiently compute the information of time-frequency spectrum. 

Since the sliding process is adopted sample by sample, the 

spectral bin output data rate can be same to the input data rate. 

Under the conditions of M-sample real input sequence (M=256) 

and N-point recursive DFT computation (N=64), the proposed 

method has the following advantages: 1) Proposed-I requires less 

computational complexity than Krzysztof Duda’s method does. 

The proposed algorithm greatly achieves 80.35% reduction in 

computation because the number of multiplication only takes 

44,864 operations. Additionally, 54.91% of addition operations 

can be saved; 2) For computing each frequency bin, the 

complexity of Proposed-I only requires 4 real additions and 2 real 

multiplications after the first spectral component has been finally 

calculated; 3) Proposed-II utilizes three registers and re-timing 

scheme to effectively shorten and balance the critical path of the 

proposed design. Moreover, the number of coefficients can be 

saved by 50% compared to Krzysztof Duda’s method. In FPGA 

implementation, the proposed design can be operated at 43.5 

MHz processing rate which can easily meet the requirement of 

real-time application. Therefore, it would be more suitable for 

real-time analysis of time-frequency spectrum in the future. 

 

Index Terms—Discrete Fourier transform (DFT); Recursive DFT 

(RDFT); Sliding DFT (SDFT); 

I. INTRODUCTION 

In many applications of digital signal processing, Discrete 
Fourier Transform (DFT) has been widely employed to 
analysis the signal power in frequency domain. To observe the 
variety of time-frequency spectrum in details, a sliding 
sinusoidal transform [1], such as sliding DFT (SDFT) [2, 3, 4], 
is proposed to offer enough information in a short-time domain. 
Due to the recursive relationship between two subsequent local 
transform spectra [2, 3], the recursive DFT can be combined 
with the sliding unit to implement a SDFT computation. As 
well known, Goerzel’s DFT [5] is useful and powerful in 
certain practical frequency bins for dual-tone multi-frequency 
signaling (DTMF) recognition applications. Unlike fast Fourier 
transform (FFT) [6, 7, 8] calculations, it takes less 
computational workload while fewer frequency bins are 
required. Recently, various recursive DFTs (RDFTs) [9-14] 
have been well developed. Lai et al. [10, 11, 12] have a greater 
improvement in terms of computational cycle and 
computational complexity. To achieve high performance in 
computation, a hybrid architecture design of RDFT and radix-2
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FFT [14] is recently proposed for variable-transform-length 

DFT. On the other hand, Krzysztof Duda proposed a powerful 
mSDFT algorithm by using a modulated concept [4] to obtain 
an exactly guaranteed accurate and stable SDFT computation. 
However, it caused a heavy computational workload per output 
sample, i.e. 10 real multiplications and 9 real additions more 
than previous works [2, 3]. Based on these experiences of 
above works, a low-complexity and low-cost RDFT is further 
extended to develop a novel SDFT algorithm with a 
comparable accuracy to Jacobsen and Lyons’ SDFT [2, 3]. 
Since SDFT is applied to various signal processing topics 
especially for ultrasonic range finder [15], ECG noise cancelers 
[16], and phase locking scheme [17], a real-time, low-cost and 
low-complexity SDFT algorithm has become an essential issue 
not only for software realization but also for hardware 
implementation. 

In this work, we focus on not only reducing the 
computational complexity in algorithm but also saving the 
hardware cost in implementation. The proposed algorithm is 
derived in details, and then is mapped into a hardware 
architecture. By using some basic very-large-scale integration 
(VLSI) schemes, a low-cost and high-speed SDFT hardware 
accelerator can be efficiently accomplished. 

The rest of this paper is organized as follows: Section II 
takes a detailed derivation in algorithm first, and then the 
system transfer function of the proposed SDFT formula is 
given. Section III demonstrates the compact architecture design 
of the proposed SDFT, and Section IV compares various 
performance metrics with other approaches.  Finally, 
conclusions are outlined in Section V. 

II. PROPOSED ALGORITHM DERIVATION OF NOVEL 

SLIDING DFT COMPUTATION 

The N-point DFT computation with the input (x[n]) and 
output (X[k]) sequences is defined as follow: 
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The transfer function of Goertzel DFT [5] is further derived as 
a z-transform formula (2) by a recursive difference equation (3). 
It should be noticed that the recurrent loops of Goertzel DFT 
totally takes (N+1) times, and the input sequence should be set 
zero during the (N+1)

th
 time slot.  
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By following up Jacobsen and Lyons’ approach [2], the system 
transfer function of sliding Goertzel DFT [5] can be therefore 
defined as (4). Compared with (2) and (4), the major difference 
shows that the numerator of HSG(z) is multiplied by (1-z

-N
). 
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Since the previous work [10] had a different difference 
equation as (5), the transfer function of Lai et al.’s DFT was 
derived as (6). Eq. (6) was therefore expressed as (7), where θk 
was set to 2πk/N. To reduce the multiplication of cos(θk) in 
implementation, the coefficients of cos(θk) and 2cos(θk) were 
shared by using one real multiplier and a shifter. Different to 
Goertzel’s DFT, the total recurrent times of Lai et al.’s RDFT 
only take N iterations due to the derivation of (5). 
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By multiplying the factor (1-z
-N

) into HLai(z), the system 
transfer function of the proposed SDFT, i.e. HSLai(z), could be 
finally yielded 
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Eq. (8) clearly shows that only two real multiplications are 

required for the coefficients of sin(θk) and cos(θk) in the 

proposed SDFT. Compared with Krzysztof Duda’s mSDFT [4, 

Fig. 4], the proposed method really has less computational 

complexity. 

III. ARCHITECTURE DESIGN OF THE PROPOSED NOVEL 

SLIDING DFT ALGORITHM 

A. Design Concept of Kernel Processing Unit 

According to (8), the architecture design of the proposed 

novel sliding recursive DFT algorithm can be easily mapping 

into Fig. 1. It can be observed that the critical path of the 

proposed algorithm has (TM + 4TA), where TM and TA are, 

respectively, the time periods of the multiplier and adder. After 

retiming and adding three registers into Fig. 1, a higher speed 

SDFT design can be drawn as shown in Fig. 2. The coefficient 

requirement in this work as well as previous work [10] can be 

easily reduced by 50% due to the symmetric identities of sine 

and cosine. Since the input sequence is real number, the 

computational complexity of the proposed SDFT algorithm 

would totally takes 2 real multiplications and 4 real additions 

for the calculation of each frequency bin after the first spectral 

component has been finally calculated. 

 

 
Fig. 1 Proposed Novel Sliding DFT Algorithm (Proposed I) 

 

 
Fig. 2 Proposed Low-critical-path SDFT Design (Proposed II) 

B. Overall Hardware Architecture Design 

The overall hardware architecture can be mainly divided into 

the following three blocks: (1) Control Unit (CU); (2) Memory 

Unit (MU); (3) Processing Unit (PU). Figure 3 shows the 

overall architecture design, and it is noticed that the MU is 

composed of RAM and ROM, where ROM and RAM are, 

respectively, applied for storing the twiddle factors and 

implementing the element of Z
-N

 as mentioned in Fig. 2. The 

input sequence x[n] is fed to the PU for recursive computation. 

In general, the proposed hardware accelerator would be 

integrated with a greater system so that it should have a 

handshaking process through the valid signals of input and 

output, i.e. xValid and XValid, to make sure that the 

input/output data is ready. While CU receives this signal, it will 

follow the finite-state-machine rule to determine the action 

modes (‘READ’ or ‘WRITE’) of MU. At the Initial State, MU 

only executes the action of ‘WRITE’ until the next state, i.e. 

Pre-Read and Write State, is ready for entry. CU further 

controls the relative memories to finish the corresponding 

action modes according to the fed data for MU. While CU 

found that there is no input data, i.e. xValid is ‘LOW’, the 

coefficient ROM just can process the request of coefficient 

update.  In the meanwhile, CU would determine that the 

addressing way of coefficient ROM is increased or decreased. 

At this moment in time, it shows that a sliding DFT operation is 

finished. The timing diagram of the overall architecture is 

displayed in Fig. 4. 

C. The Control of Memory Unit 

To efficiently reduce the area cost, the memory controller for 
the access of RAM and ROM is designed into two parts. The 
first one is RAM controller, and the other one is for ROM. (1) 
For RAM controller design: the SDFT computation requires an 
accumulated circuit in the first stage to recursively calculate the 
operation of (1-Z

-N
), it implies that the input data should be 

carefully stored via the delay element of Z
-N

. To realize this 



 

 

delay element and to solve the synchronizing access of ‘READ’ 
and ‘WRITE’ requests, a directly mapping method instead of 
FIFO registers is employed by a two-port memory. However, it 
still costs more area and hardware resource in implementation. 
Therefore, we adopt two half-size and single-port memories 
(memory #1 and #2) with an extra smaller control circuit to 
achieve a two-port memory in this work. The behavior of 
control circuit has three states, i.e. “initial” state, the state of 
“read action for memory#1 and write action for memory#2”, 
and the state of “write action for memory#1 and read action for 
memory#2”. In the initial state, the action modes of these two 
memories are alternately writing data into to memory until (N-1) 
clock cycles finished. Then, memory#1 keeps writing action, 
and memory#2 changes the action mode into ‘READ’ for data 
pre-loading which is used under the time period of (N+1)

th
 

clock cycle. This state would be kept executing until the input 
of SDFT without any data coming. (2) ROM controller design: 
For N-point sliding window, the cosine and sine functions 
totally takes (2N) coefficients. In hardware implementation, we 
can employ the up/down counter and the symmetric identity of 
coefficients as mentioned above to reduce the number of 
coefficients by 50%. Figure 5 displays the relationships 
between the coefficients of sine and cosine. While cosine 
coefficient is under the action mode of ‘READ’ from memory, 
an up counter can be used to produce the required memory 
address while the index of k is increased with frequency bin 
changing. Then, the desired value of cosine coefficient, 
cos(2*pi*(k+1)/N), for next time period is further prepared, 
after finishing all operations during the time period of index of 
k. Due to the symmetric identity of cosine function, 
cos(2*pi*(k+1)/N) can be instead of cos(2*pi*(k-1)/N) so that 
the down counter could be applied to generate the desired 
memory address. Based on this scheme, the total size of 
coefficient ROM therefore takes N words. 

IV. COMPARISON AND DISCUSSION 

In this section, the performance metrics in terms of 

multiplication, addition, and coefficient are evaluated in Table 

1 for SDFT and FFT-based SDFT algorithms. Here, we 

assumed that the transform length (N) of DFT is 64, the time-

domain total sliding samples (M) are 256, and the input signal 

is real number. It should be noticed that one complex 

multiplication requires four real multiplications and 2 

additions for the following performance evaluation. The 

results showed that radix-2-based FFT [8] has totally 244,992 

multiplications and 244,992 additions; however, the sliding 

RDFT algorithms such as Jacobsen and Lyons’ [2] and the 

proposed algorithm have quite lower computational 

complexity than FFT-based SDFT computation. Krzysztof 

Duda’s [4], respectively, takes 228,352 multiplications and 

207,936 additions for calculating SDFT coefficients. 

Compared with this latest SDFT approach, the numbers of 

multiplication and addition for the proposed algorithm are, 

respectively, 44,864 and 93,760 which have 80.35% and 

54.91% reduction. Table 1 also showed that the numbers of 

coefficients and computational cycles of the proposed SDFT 

algorithm are comparable to that of [2, 4, 8]. For analyzing the 

execution time of hardware accelerator, the items of critical 

path and computational cycle are both involved. It also results 

that the proposed design would have similar performance but 

with less number of multiplication in computation. In addition, 

the number of coefficient for the proposed algorithm has a 

great reduction by 50% compared with previous works [2, 4]. 
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Fig. 3 Proposed Overall Hardware Architecture Design 
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Fig. 4 Timing Diagram of the Proposed Architecture Design 
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Fig. 5 Relationships between Coefficients of Sine and Cosine 
 

Table 2 compares hardware cost in terms of multiplier, adder, 
multiplexer, register, and coefficient-ROM size. The result 
demonstrates that the proposed design has the lowest cost than 
other approaches. There are only 2 real multipliers, 5 real 
adders, 69 registers, and 64 coefficients in implementation. 
Compared with Krzysztof Duda’s [4], the numbers of 
multiplier and coefficient can be, respectively, reduced by 80% 
and 50%. For hardware realization, the proposed design, which 
is implemented by Altera Cyclone IV device, can be operated 
at 43.5 MHz. This implies that the proposed design can 
produce each frequency bins within the time period of 0.0229 
us. It totally takes 1.47 us for all frequency bins. Under the 
condition of 1 sound channel and 48 kHz sampling rate, the 



 

 

real-time specific requirement is 20.833 us which is greater 
than that of the proposed 64-point SDFT hardware accelerator 
design. Overall, the proposed design would be more suitable 
for the real-time application of time-frequency spectrum due to 
its low complexity. 

V. CONCLUSION 

In this paper, a low-cost and low-complexity sliding DFT 

algorithm is developed and designed for the time-frequency 

spectra calculation. The comparison results proved that the 

proposed method exactly has better performance in terms of 

computational complexity, hardware resource and 

computational speed than other related approaches. It would 

be more powerful for future applications on the topic of digital 

signal processing. 
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Table 1. Computational Complexity Comparison for Various N-point DFT and FFT Algorithm Applied for Sliding Application 

Metrics 2003 [2] 2010 [4] 2014 [8] Proposed I & II 

Multiplication N*(3M+4N-3) N*(10M+16N-16) (M+N-1)*4*N/2*log2N N*(2M+3N-4) 

Addition N*(4M+7N-4) N*(9M+15N-15) (M+N-1)*2*N*log2N N*(4M+7N-7) 

Coefficient 2N 2N N N 

Cpt. Cycle (a) N*(N+1)+M-1 N2+M-1 Unlisted N2+M-1 

Cri. Path (b) 2TA+TM 2TA+2TM Unlisted 
4TA+TM

(I) 

2TA+TM
(II) 

Cpt. Time (a)*(b) (a)*(b) Unlisted (a)*(b) 

Note: Cri. Path = Critical Path; Cpt. Cycle = Computational Cycle. 

Table 2. Hardware Cost Comparison for Various 64-point DFT and FFT Architecture Designs Applied for Sliding Application 

Metrics 2003 [2] 2010 [4] 2014 [8] Proposed I Proposed II 

Multiplier 5 10 768 2 2 

Adder 4 7 Unlisted 5 5 

Register 64+2 64+4 Unlisted 64+2 64+5 

Coefficient 128 128 64 64 64 

 


